Improved Evolutionary Hybrids for Flexible Ligand Docking in Autodock

In this paper we evaluate the design of the hybrid EAs that are currently used to perform flexible ligand binding in the AutoDock docking software. Hybrid evolutionary algorithms (EAs) incorporate specialized operators that exploit domain-specific features to accelerate an EA’s search. We consider hybrid EAs that use an integrated local search operator to refine individuals within each iteration of the search. We evaluate several factors that impact the efficacy of a hybrid EA, and we propose new hybrid EAs that provide more robust convergence to low-energy docking configurations than the methods currently available in AutoDock.

[1]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[2]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[3]  D. Fogel,et al.  A comparison of methods for self-adaptation in evolutionary algorithms. , 1995, Bio Systems.

[4]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[5]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[6]  V. Torczon,et al.  RANK ORDERING AND POSITIVE BASES IN PATTERN SEARCH ALGORITHMS , 1996 .

[7]  William J. Wilson,et al.  Statistical methods , 1993 .

[8]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[9]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[10]  D S Goodsell,et al.  Automated docking of flexible ligands: Applications of autodock , 1996, Journal of molecular recognition : JMR.

[11]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[12]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  William E. Hart,et al.  Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application , 1999, GECCO.

[15]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[16]  William E. Hart,et al.  A Comparison of Global and Local Search Methods in Drug Docking , 1997, ICGA.

[17]  Jonathan D. Hirst,et al.  Assessing search strategies for flexible docking , 1998 .

[18]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[19]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[20]  W. Hart Adaptive global optimization with local search , 1994 .

[21]  William E. Hart,et al.  The Role of Development in Genetic Algorithms , 1994, FOGA.

[22]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[23]  C. Sander,et al.  An effective solvation term based on atomic occupancies for use in protein simulations , 1993 .

[24]  Charles L. Brooks,et al.  Assessing search strategies for flexible docking , 1998, J. Comput. Chem..

[25]  David S. Goodsell,et al.  Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 , 1996, J. Comput. Aided Mol. Des..