Propagation of fundamental and third harmonics along a nonlinear seismic metasurface

[1]  M. H. Ghasemi,et al.  Enhancing bandwidth of metamaterial plate with linear and nonlinear passive absorbers , 2021 .

[2]  T. Rabczuk,et al.  Broadband Rayleigh wave attenuation by gradient metamaterials , 2021 .

[3]  C. Daraio,et al.  Rayleigh wave propagation in nonlinear metasurfaces , 2021, Journal of Sound and Vibration.

[4]  T. Rabczuk,et al.  Propagation and attenuation of Rayleigh and pseudo surface waves in viscoelastic metamaterials , 2021 .

[5]  Dianlong Yu,et al.  Vibration properties and optimized design of a nonlinear acoustic metamaterial beam , 2021 .

[6]  Xiaoling Jin,et al.  An Inertant Elastic Metamaterial Plate With Extra Wide Low-Frequency Flexural Band Gaps , 2021 .

[7]  M. Ruzzene,et al.  Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam , 2020, Nonlinear Dynamics.

[8]  Guoliang Huang,et al.  Non-reciprocal Rayleigh waves in elastic gyroscopic medium , 2020 .

[9]  R. Zivieri Dynamical Properties of a Periodic Mass-Spring Nonlinear Seismic Metamaterial , 2020, 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials).

[10]  Z. Shi,et al.  Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves , 2020 .

[11]  James M. Manimala,et al.  Passive-adaptive mechanical wave manipulation using nonlinear metamaterial plates , 2020, Acta Mechanica.

[12]  H. Fan,et al.  In-plane surface wave in a classical elastic half-space covered by a surface layer with microstructure , 2020, Acta Mechanica.

[13]  Jianke Du,et al.  Revealing the Linear and Nonlinear Dynamic Behaviors of Metabeams With a Dynamic Homogenization Model , 2020 .

[14]  Pai Peng,et al.  A Matryoshka-like seismic metamaterial with wide band-gap characteristics , 2020 .

[15]  S. Guenneau,et al.  Effective model for elastic waves propagating in a substrate supporting a dense array of plates/beams with flexural resonances , 2020, 2001.06334.

[16]  Yuanhao Xiong,et al.  Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections , 2020 .

[17]  Haisheng Shu,et al.  A Review of Research on Seismic Metamaterials , 2020, Advanced Engineering Materials.

[18]  Chuanzeng Zhang,et al.  Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators , 2019 .

[19]  X. Zhuang,et al.  Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps , 2019, Materials & Design.

[20]  H. Ouyang,et al.  Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation , 2019, Applied Physics Letters.

[21]  H. Ouyang,et al.  Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity , 2019, Mechanical Systems and Signal Processing.

[22]  A. Aladwani,et al.  Fluid-structural coupling in metamaterial plates for vibration and noise mitigation in acoustic cavities , 2019, International Journal of Mechanical Sciences.

[23]  Guoliang Huang,et al.  Wave propagation in a nonlinear acoustic metamaterial beam considering third harmonic generation , 2018, New Journal of Physics.

[24]  G. Finocchio,et al.  Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems. , 2018 .

[25]  Jie Yang,et al.  Wave propagation in viscoelastic phononic crystal rods with internal resonators , 2018, Applied Acoustics.

[26]  Yi-Ze Wang,et al.  Nonreciprocal phenomenon in nonlinear elastic wave metamaterials with continuous properties , 2018, International Journal of Solids and Structures.

[27]  A. Marzani,et al.  Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation , 2018, Soil Dynamics and Earthquake Engineering.

[28]  Yuesheng Wang,et al.  Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain , 2018 .

[29]  Wei-dong Zhu,et al.  Modeling and Analysis of Nonlinear Wave Propagation in One-Dimensional Phononic Structures , 2017 .

[30]  Jung-San Chen,et al.  Flexural wave propagation in metamaterial beams containing membrane-mass structures , 2017 .

[31]  M. Nouh,et al.  An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures , 2017 .

[32]  B. Bonello,et al.  Wave propagation in one-dimensional nonlinear acoustic metamaterials , 2017, 1703.06761.

[33]  Michael J. Frazier,et al.  Band gap transmission in periodic bistable mechanical systems , 2017 .

[34]  Antonio Palermo,et al.  Engineered metabarrier as shield from seismic surface waves , 2016, Scientific Reports.

[35]  Dianlong Yu,et al.  Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method , 2016 .

[36]  Dianlong Yu,et al.  Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study. , 2016, Physical review. E.

[37]  N. Pugno,et al.  Large scale mechanical metamaterials as seismic shields , 2016 .

[38]  A. Baz,et al.  Periodic metamaterial plates with smart tunable local resonators , 2016 .

[39]  Chiara Daraio,et al.  Unidirectional Transition Waves in Bistable Lattices. , 2016, Physical review letters.

[40]  Philippe Roux,et al.  A seismic metamaterial: The resonant metawedge , 2016, Scientific Reports.

[41]  J. J. Thomsen,et al.  Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Yue-Sheng Wang,et al.  Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain , 2016 .

[43]  R. Craster,et al.  Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances , 2016, Scientific Reports.

[44]  Chiara Daraio,et al.  Wide band-gap seismic metastructures , 2015 .

[45]  Fuh-Gwo Yuan,et al.  Microstructural designs of plate-type elastic metamaterial and their potential applications: a review , 2015 .

[46]  M. Hussein,et al.  Dispersion characteristics of a nonlinear elastic metamaterial , 2014 .

[47]  P. Pai,et al.  Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression , 2014 .

[48]  A. Baz,et al.  Vibration Characteristics of Metamaterial Beams With Periodic Local Resonances , 2014 .

[49]  M. Ruzzene,et al.  Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook , 2014 .

[50]  S. Guenneau,et al.  Experiments on seismic metamaterials: molding surface waves. , 2014, Physical review letters.

[51]  Ping Sheng,et al.  A Step Towards a Seismic Cloak , 2014 .

[52]  Youhe Zhou,et al.  The influence of material properties on the elastic band structures of one-dimensional functionally graded phononic crystals , 2012 .

[53]  Massimo Ruzzene,et al.  Broadband plate-type acoustic metamaterial for low-frequency sound attenuation , 2012 .

[54]  Massimo Ruzzene,et al.  Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos , 2011 .

[55]  Guoliang Huang,et al.  Band Gaps in a Multiresonator Acoustic Metamaterial , 2010 .

[56]  Lien-Wen Chen,et al.  Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials , 2009 .

[57]  Mohamed Farhat,et al.  Ultrabroadband elastic cloaking in thin plates. , 2009, Physical review letters.

[58]  Zhengyou Liu,et al.  Theoretical study of subwavelength imaging by acoustic metamaterial slabs , 2009, 0905.3866.

[59]  Guoliang Huang,et al.  On the negative effective mass density in acoustic metamaterials , 2009 .

[60]  Daniel Torrent,et al.  Acoustic cloaking in two dimensions: a feasible approach , 2008 .

[61]  Fan Yang,et al.  A multilayer structured acoustic cloak with homogeneous isotropic materials , 2008 .

[62]  Xianjie Liu,et al.  One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus , 2008 .

[63]  Jakob Søndergaard Jensen,et al.  Low-frequency band gaps in chains with attached non-linear oscillators , 2007 .

[64]  D. Torrent,et al.  Acoustic metamaterials for new two-dimensional sonic devices , 2007 .

[65]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[66]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[67]  V. Nesterenko,et al.  Propagation of nonlinear compression pulses in granular media , 1984 .

[68]  Guoliang Huang,et al.  Non-reciprocal Rayleigh wave propagation in space–time modulated surface , 2021 .

[69]  Zhicheng He,et al.  A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation , 2021 .

[70]  S. El-Borgi,et al.  Metamaterial beam with embedded nonlinear vibration absorbers , 2018 .

[71]  C. Sun,et al.  Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density , 2009 .