1. Digital Images and Computer Modeling

Abstract This chapter describes how digital images of porous materials can be analyzed to give information about the structure and properties of the material and the various ways 3-D digital-image-based models can be generated to help understand real porous materials.

[1]  Schaefer,et al.  Structure of random porous materials: Silica aerogel. , 1986, Physical review letters.

[2]  T. Vicsek,et al.  Dynamics of fractal surfaces , 1991 .

[3]  Salvatore Torquato,et al.  Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds , 1989, Journal of Fluid Mechanics.

[4]  Schwartz,et al.  New pore-size parameter characterizing transport in porous media. , 1986, Physical review letters.

[5]  Day,et al.  Universal conductivity curve for a plane containing random holes. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[6]  S. D. Collins,et al.  Porous silicon formation mechanisms , 1992 .

[7]  I. T. Young,et al.  Quantitative Microscopy , 1984, Definitions.

[8]  Pierre M. Adler,et al.  The formation factor of reconstructed porous media , 1992 .

[9]  Snyder,et al.  Geometrical percolation threshold of overlapping ellipsoids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Torquato Relationship between permeability and diffusion-controlled trapping constant of porous media. , 1990, Physical review letters.

[11]  Wong Scattering by inhomogeneous systems with rough internal surfaces: Porous solids and random-field Ising systems. , 1985, Physical review. B, Condensed matter.

[12]  P. Renault,et al.  The effect of spatially correlated blocking-up of some bonds or nodes of a network on the percolation threshold , 1991 .

[13]  Peter Bernhard Hirsch Introductory remarks , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[14]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[15]  William Fuller Brown,et al.  Solid Mixture Permittivities , 1955 .

[16]  James G. Berryman,et al.  Relationship between specific surface area and spatial correlation functions for anisotropic porous media , 1987 .

[17]  Po-zen Wong,et al.  Small-angle scattering by rough and fractal surfaces , 1988 .

[18]  Ke Xu,et al.  Microstructure and transport properties of porous building materials , 1998 .

[19]  Teubner,et al.  Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  James G. Berryman,et al.  Normalization constraint for variational bounds on fluid permeability , 1985 .

[21]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[22]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[23]  Chen,et al.  Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Salvatore Torquato,et al.  Simulation of diffusion and trapping in digitized heterogeneous media , 1995 .

[25]  Mark A. Knackstedt,et al.  Mechanical and transport properties of model foamed solids , 1995 .

[26]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media—I. Exact series expansions , 1997 .

[27]  E. Garboczi,et al.  Computer simulation of the diffusivity of cement-based materials , 1992 .

[28]  A. H. Thompson,et al.  The microgeometry and transport properties of sedimentary rock , 1987 .

[29]  Pierre M. Adler,et al.  Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation , 1993 .

[30]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[31]  Edward J. Garboczi,et al.  Percolation of phases in a three-dimensional cement paste microstructural model , 1991 .

[32]  B. Flannery,et al.  Three-Dimensional X-ray Microtomography , 1987, Science.

[33]  S. Whitaker Flow in porous media I: A theoretical derivation of Darcy's law , 1986 .

[34]  Salvatore Torquato,et al.  Local volume fraction fluctuations in heterogeneous media , 1990 .

[35]  Maurice A. Biot,et al.  Generalized Theory of Acoustic Propagation in Porous Dissipative Media , 1962 .

[36]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[37]  Michael A. Galler,et al.  Computer simulations of binder removal from 2-D and 3-D model particulate bodies , 1996 .

[38]  D. Bentz,et al.  Hydraulic radius and transport in reconstructed model three-dimensional porous media , 1994 .

[39]  Pierre M. Adler,et al.  Fractal porous media IV: Three-dimensional stokes flow through random media and regular fractals , 1990 .

[40]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[41]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[42]  Jeffrey W. Bullard,et al.  Digital-image-based models of two-dimensional microstructural evolution by surface diffusion and vapor transport , 1997 .

[43]  Roberts,et al.  Structure-property correlations in model composite materials. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  E. Garboczi,et al.  Cellular automaton algorithm for surface mass transport due to curvature gradients simulations of sintering , 1992 .

[45]  Pierre M. Adler,et al.  Flow in simulated porous media , 1990 .

[46]  Po‐zen Wong,et al.  The Statistical Physics of Sedimentary Rock , 1988 .

[47]  D. Bentz Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development , 1997 .

[48]  Blunt,et al.  Macroscopic parameters from simulations of pore scale flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[49]  Richard A. Dawe,et al.  Fractals — An overview of potential applications to transport in porous media , 1986 .

[50]  D. Winslow,et al.  The fractal arrangement of hydrated cement paste , 1995 .

[51]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[52]  A. Katz,et al.  Prediction of rock electrical conductivity from mercury injection measurements , 1987 .

[53]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[54]  Edward J. Garboczi,et al.  The elastic moduli of simple two‐dimensional isotropic composites: Computer simulation and effective medium theory , 1992 .

[55]  Martys,et al.  Universal scaling of fluid permeability for sphere packings. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  R. Lenormand Flow through porous media: limits of fractal patterns , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[57]  Young,et al.  Lattice models of biological growth. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[58]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[59]  Thompson,et al.  Quantitative prediction of permeability in porous rock. , 1986, Physical review. B, Condensed matter.

[60]  C. Kittel Introduction to solid state physics , 1954 .

[61]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[62]  P. Salatino,et al.  Modeling fragmentation by percolation in combustion of carbons , 1991 .

[63]  S. Zaleski,et al.  Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow , 1994 .

[64]  Daniel H. Rothman,et al.  Cellular‐automaton fluids: A model for flow in porous media , 1988 .

[65]  John A. Hudson,et al.  Anisotropic effective‐medium modeling of the elastic properties of shales , 1994 .

[66]  James G. Berryman,et al.  Measurement of spatial correlation functions using image processing techniques , 1985 .

[67]  Stefano Levialdi,et al.  Image Analysis and Processing , 1987 .

[68]  M. Yanuka,et al.  Percolation processes and porous media: III. Prediction of the capillary hysteresis loop from geometrical and topological information of pore space , 1989 .

[69]  Robert L. Coble,et al.  Effect of Porosity on Physical Properties of Sintered Alumina , 1956 .

[70]  Wong,et al.  Correlation function and structure factor for a mass fractal bounded by a surface fractal. , 1992, Physical review. B, Condensed matter.

[71]  Joseph B. Keller,et al.  Extremum principles for slow viscous flows with applications to suspensions , 1967, Journal of Fluid Mechanics.

[72]  T. Vicsek Fractal Growth Phenomena , 1989 .

[73]  Clark B. Millikan,et al.  LXXVII. On the steady motion of viscous, incompressible fluids; with particular reference to a variation principle , 1929 .

[74]  Torquato,et al.  Coarse-graining procedure to generate and analyze heterogeneous materials: Theory. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  Salvatore Torquato,et al.  Extraction of morphological quantities from a digitized medium , 1995 .

[76]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[77]  Edward J. Garboczi,et al.  Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass , 1998 .

[78]  Andreas M. Glaeser,et al.  Production of Controlled‐Morphology Pore Arrays: Implications and Opportunities , 1987 .

[79]  Peter V. Coveney,et al.  Cellular automaton simulations of cement hydration and microstructure development , 1994 .

[80]  J. Quiblier A new three-dimensional modeling technique for studying porous media , 1984 .

[81]  Salvatore Torquato,et al.  Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media , 1991 .

[82]  E. Garboczi,et al.  Finite Element and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials | NIST , 1998 .

[83]  Arthur W. Rose,et al.  Porous media: Fluid transport and pore structure (2nd Ed.) , 1993 .

[84]  Nicos Martys,et al.  Transport in sandstone: A study based on three dimensional microtomography , 1996 .

[85]  Jayanth R. Banavar,et al.  Image‐based models of porous media: Application to Vycor glass and carbonate rocks , 1991 .

[86]  L. Schwartz,et al.  Analysis of electrical conduction in the grain consolidation model , 1987 .

[87]  E. Garboczi,et al.  Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media. , 1992, Physical review. B, Condensed matter.

[88]  James G. Berryman,et al.  Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions , 1986 .

[89]  J. Van Brakel,et al.  Mercury porosimetry: state of the art , 1981 .

[90]  John A. Cherry,et al.  Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites , 1989 .

[91]  Sahimi Transport, reaction, and fragmentation in evolving porous media. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[92]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[93]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[94]  J. M. Hammersley,et al.  Percolation theory and its ramifications , 1980 .

[95]  Shechao Feng,et al.  Vibrational modes in granular materials , 1984 .

[96]  S. Kirkpatrick Percolation and Conduction , 1973 .

[97]  Pierre M. Adler,et al.  The effective mechanical properties of reconstructed porous media , 1996 .

[98]  Edward J. Garboczi Mercury porosimetry and effective networks for permeability calculations in porous materials , 1991 .

[99]  J. W. Essam,et al.  Percolation theory , 1980 .

[100]  Edward J. Garboczi,et al.  Modelling drying shrinkage of cement paste and mortar Part 1. Structural models from nanometres to millimetres , 1995 .

[101]  Arnon Bentur,et al.  Materials science of concrete IV: Edited by J. Skalny and S. Mindess, The American Ceramic Society, 1995 , 1995 .

[102]  Thorpe,et al.  Percolation properties of random ellipses. , 1988, Physical review. A, General physics.

[103]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[104]  H. R. Anderson,et al.  Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application , 1957 .

[105]  J. Bullard,et al.  Numerical methods for computing interfacial mean curvature , 1995 .

[106]  Ioannis Chatzis,et al.  Electrical Conductivity and Percolation Aspects of Statistically Homogeneous Porous Media , 1997 .

[107]  Isaac Balberg,et al.  Recent developments in continuum percolation , 1987 .

[108]  Pierre M. Adler,et al.  The effective mechanical properties of random porous media , 1996 .

[109]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[110]  Salvatore Torquato,et al.  Microstructure of two-phase random media.III: The n-point matrix probability functions for fully penetrable spheres , 1983 .

[111]  Edward J. Garboczi,et al.  Experimental and simulation studies of the interfacial zone in concrete , 1992 .