Novel optics/micro-optics for miniature imaging systems

The visual revolution triggered by the commercial application of digital image capturing devices generates the need for new miniaturized and cheap optical imaging systems and cameras. However, in imaging we can observe only a permanent miniaturization of elements but always similar optical principles are applied which are known to the optical designers for many decades. With the newly gained spectrum of technological capabilities it is the time to ask: Which vision principle should be used at which level of miniaturization and which technology has to be applied in order to achieve the perfectly adapted imaging system? In this paper we present an overview of two insect inspired artificial compound eye concepts for compact vision systems fabricated by lithographic technologies, one classical miniaturized objective and its wafer-scale fabrication and the use of variable focal length liquid lenses for miniaturized autofocus- and zoom objectives without moving parts.

[1]  S. Exner Die Physiologie der facettirten Augen von Krebsen und Insecten , 1891 .

[2]  M. F. Land,et al.  The optical geometry of euphausiid eyes , 1979, Journal of comparative physiology.

[3]  P. Nussbaum,et al.  Design, fabrication and testing of microlens arrays for sensors and microsystems , 1997 .

[4]  Michael F. Land Eyes with mirror optics , 2000 .

[5]  Peter Schreiber,et al.  Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices , 2004, SPIE Optical Systems Design.

[6]  エルマー・クルマン,et al.  Lens array photolithography , 1998 .

[7]  M. Hutley,et al.  The moire magnifier , 1994 .

[8]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[9]  Carl E. Halford,et al.  Design and analysis of apposition compound eye optical sensors , 1995 .

[10]  Javier Alda,et al.  Properties of moiré magnifiers , 1998 .

[11]  Peter Schreiber,et al.  Artificial compound eyes: different concepts and their application for ultraflat image acquisition sensors , 2004, SPIE MOEMS-MEMS.

[12]  J Jahns,et al.  Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics. , 1997, Applied optics.

[13]  Jun Tanida,et al.  Reconstruction of a high-resolution image on a compound-eye image-capturing system. , 2004, Applied optics.

[14]  Andreas Tünnermann,et al.  Microoptical telescope compound eye. , 2005, Optics express.

[15]  Peter Dannberg,et al.  Polymer UV-molding for micro-optical systems and O/E-integration , 2000, SPIE MOEMS-MEMS.

[16]  Frank Wippermann,et al.  Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective , 2005, SPIE Optical Systems Design.

[17]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[18]  M F Land,et al.  Structure of the retinae of the principal eyes of jumping spiders (Salticidae: dendryphantinae) in relation to visual optics. , 1969, The Journal of experimental biology.

[19]  P. McIntyre,et al.  Graded-Index Optics are Matched to Optical Geometry in the Superposition Eyes of Scarab Beetles , 1985 .

[20]  Hans Peter Herzig,et al.  Microlens array imaging system for photolithography , 1996 .

[21]  Kenneth J. Weible,et al.  Miniaturized imaging systems , 2003 .

[22]  Andreas Tünnermann,et al.  Artificial apposition compound eye fabricated by micro-optics technology. , 2004, Applied optics.

[23]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[24]  Vesselin Shaoulov,et al.  Design and assessment of microlenslet-array relay optics. , 2003, Applied optics.

[25]  Michael F. Land,et al.  Animal Eyes with Mirror Optics , 1978 .

[26]  M C Hutley,et al.  Imaging properties of the Gabor superlens , 1999 .

[27]  R. F. Stevens,et al.  Optical inspection of periodic structures using lens arrays and moire magnification , 1999 .

[28]  Hans J. Tiziani,et al.  Microlens arrays with spatial variation of the optical functions , 1997 .

[29]  S. Ogata,et al.  Optical sensor array in an artificial compound eye , 1994 .

[30]  G. Connell,et al.  Technique for monolithic fabrication of microlens arrays. , 1988, Applied optics.

[31]  Peter Dannberg,et al.  Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. , 2005, Optics express.

[32]  Guillaume Dovillaire,et al.  Dynamic study of a Varioptic variable focal lens , 2002, SPIE Optics + Photonics.

[33]  R. Anderson Close-up imaging of documents and displays with lens arrays. , 1979, Applied optics.

[34]  Isao Shimoyama,et al.  A one-chip scanning retina with an integrated micromechanical scanning actuator , 2001 .

[35]  Reinhard Voelkel Natural optical design concepts for highly miniaturized camera systems , 1999, Optical Systems Design.

[36]  David S. Williams,et al.  The principal eyes of a jumping spider have a telephoto component , 1980, Nature.

[37]  Kenjiro Hamanaka,et al.  An Artificial Compound Eye Using a Microlens Array and Its Application to Scale-Invariant Processing , 1996 .

[38]  A. Tünnermann,et al.  Thin compound-eye camera. , 2005, Applied optics.

[39]  Michael F. Land The optics of animal eyes , 1988 .

[40]  M Kawazu,et al.  Application of gradient-index fiber arrays to copying machines. , 1980, Applied optics.

[41]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .