Suggested practice for classification of calorimeters

Abstract The classification proposed here aims at being simple, easy to apply (both for actual and hypothetical calorimeters) and having the minimum overlaps. It starts with the widely accepted heat exchange considerations, paying special attention to the dynamic behaviour of calorimeters. Nevertheless, it was found useful, for the sake of simplicity and sharpness of definition, to base the operational classification on a criterion of temperature control which leads to a clear-cut distinction between “adiabatic”, “ordinary” (main class: isoperibol) and “true or extended isothermal” (main classes: phase change, power compensation, heat-flow or conduction) calorimeters. About 100 of them are quoted here.

[1]  C. Sykes Methods for Investigating Thermal Changes Occurring during Transformations in a Solid Solution , 1935 .

[2]  W. Friauf,et al.  Stopped-flow calorimetry for biochemical reactions. , 1969, Analytical chemistry.

[3]  R. Marx High‐resolution surface calorimeter , 1984 .

[4]  Farrington Daniels,et al.  The Application of Differential Thermal Analysis to the Study of Reaction Kinetics1 , 1957 .

[5]  D. H. Everett,et al.  Adsorption from solution , 1983 .

[6]  Douglas L. Martin THE SPECIFIC HEAT OF COPPER FROM 20° TO 300 deg;K , 1960 .

[7]  J. L. Coze,et al.  Description et étalonnage d'un calorimètre adiabatique à balayage (800 K -1 800 K) , 1980 .

[8]  R. M. Izatt,et al.  An isothermal flow calorimeter designed for high temperature, high pressure operation , 1984 .

[9]  J. Callis,et al.  Flash Calorimeter for Measuring Triplet Yields , 1969 .

[10]  E. Gmelin,et al.  Automatic low temperature calorimetry for the range 0.3-320K , 1981 .

[11]  R. Mainard,et al.  A sensitive adiabatic calorimeter for measurement of low-temperature specific heats , 1977 .

[12]  George T. Furukawa,et al.  THERMAL PROPERTIES OF ALUMINUM OXIDE FROM 0 TO 1,200 K , 1956 .

[13]  N. Iwamoto Neutrino emissivities and mean free paths of degenerate quark matter , 1982 .

[14]  O. J. Kleppa A NEW TWIN HIGH-TEMPERATURE REACTION CALORIMETER. THE HEATS OF MIXING IN LIQUID SODIUM-POTASSIUM NITRATES , 1960 .

[15]  D. C. Ginnings,et al.  An adiabatic calorimeter for the range 30-degrees-C to 500-degrees-C , 1958 .

[16]  M. J. O'neill,et al.  A Differential Scanning Calorimeter for Quantitative Differential Thermal Analysis. , 1964 .

[17]  W. Zielenkiewicz Theoretical models of calorimetric systems , 1978 .

[18]  H. Dekker,et al.  Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism , 1974 .

[19]  T. Matsuo,et al.  An Adiabatic Calorimeter for High-resolution Heat Capacity Measurements in the Temperature Range from 12 to 300 K , 1975 .

[20]  D. M. Speros,et al.  REALIZATION OF QUANTITATIVE DIFFERENTIAL THERMAL ANALYSIS. I HEATS AND RATES OF SOLID—LIQUID TRANSITIONS , 1963 .

[21]  J. Dewar The Absorption and Thermal Evolution of Gases Occluded in Charcoal at Low Temperatures , 2022, Proceedings of the Royal Society of London.

[22]  E. Prosen,et al.  An Adiabatic Solution Calorimeter and Measurements of a Standard Reaction for Solution Calorimetry. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[23]  F. Sale An automatic spherical high temperature adiabatic calorimeter , 1970 .

[24]  A. V. Kiselev,et al.  THE MEASUREMENT OF HEATS OF ADSORPTION OF n-PENTANE AND ETHER BY ZEOLITE TYPE 5A BY MEANS OF AN ISOTHERMAL CONSTANT HEAT EXCHANGE CALORIMETER , 1962 .

[25]  Delbert J. Eatough,et al.  Isothermal high pressure flow calorimeter , 1976 .

[26]  V. V. Filimonov,et al.  Precision scanning microcalorimeter for the study of liquids , 1975 .

[27]  J. Rouquerol The contribution of microcalorimetry to the solution of problems involving a liquid/solid or a gas/solid interface, especially in physisorption , 1985 .

[28]  S. Gronowitz,et al.  Design and Testing of a Micro Reaction Calorimeter. , 1968 .

[29]  H. Suga,et al.  An adiabatic low-temperature calorimeter for small samples , 1984 .

[30]  A. Inaba An adiabatic calorimeter for use at intermediate and higher temperatures The heat capacity of synthetic sapphire (α-Al2O3) from 70 to 700 K , 1983 .

[31]  T. A. Jones,et al.  Calorimetric bead techniques for measurement of kinetic data for gas-solid heterogeneous reactions , 1975 .

[32]  D. I. Townsend,et al.  Thermal hazard evaluation by an accelerating rate calorimeter , 1980 .

[33]  H. Suga,et al.  An Automatic Adiabatic Calorimeter for Low Temperatures. The Heat Capacity of Standard Benzoic Acid , 1965 .

[34]  K. Marsh,et al.  An isothermal displacement calorimeter for the measurement of the enthalpy of solution of gases , 1980 .

[35]  R. Sandrock High‐pressure high‐temperature differential scanning calorimeter , 1982 .

[36]  A. Rosencwaig Photoacoustic spectroscopy. New tool for investigation of solids , 1975 .

[37]  L. T. Minassian,et al.  An isothermal calorimeter with pneumatic compensation-principles and application , 1983 .

[38]  W. A. Dench Adiabatic high-temperature calorimeter for the measurement of heats of alloying , 1963 .

[39]  C. Jolicoeur,et al.  Steady state and composition scanning differential flow microcalorimeters , 1969 .

[40]  W. Nernst Der Energieinhalt fester Stoffe , 1911 .

[41]  R. S. Jessup A new Bunsen-type calorimeter , 1955 .

[42]  H. Arntz New high pressure low temperature differential scanning calorimeter , 1980 .

[43]  J. Martin,et al.  An adiabatic calorimeter for heat-capacity measurements between 6 and 300 K. The molar heat capacity of aluminium , 1980 .

[44]  W. Zielenkiewicz Calorimetry for thermokinetic determinations , 1984 .

[45]  R. M. Izatt,et al.  An Isothermal Titration Calorimeter , 1968 .

[46]  W. Regenass Thermoanalytische methoden in der chemischen verfahrensentwicklung , 1977 .

[47]  M. Kaminski,et al.  The heats of hydration of cement constituents , 1982 .

[48]  Ingemar Wadsö,et al.  A Flow Micro Reaction Calorimeter. , 1968 .

[49]  L. Hansen,et al.  Isothermal, isobaric, elevated temperature, high‐pressure, flow calorimeter , 1981 .

[50]  R. Hill,et al.  A differential scanning calorimeter with radiant heating and control , 1969 .

[51]  F. Kanbour,et al.  Solution Calorimeter with Peltier Cooling for Operation at Constant Temperature , 1967 .

[52]  R. Ferro,et al.  A direct isoperibol aneroid calorimeter , 1974 .

[53]  R. M. Izatt,et al.  An Isothermal Titration Microcalorimeter , 1973 .

[54]  O. J. Kleppa,et al.  Calvet-type calorimeter for the study of high-temperature processes I. Description of an apparatus appropriate for organic materials , 1984 .

[55]  Z. Grabowski,et al.  Pulsed photoacoustic determination of the quantum yield of triplet state formation , 1985 .

[56]  D. R. Stull An automatic adiabatic low temperature calorimeter , 1957 .