An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection
暂无分享,去创建一个
Juan José Salazar González | Isabel Bermejo | Ignacio García-Marco | Juan José SALAZAR-GONZÁLEZ | Ignacio García-Marco | I. Bermejo
[1] Andrew V. Goldberg,et al. Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.
[2] J. Okninski,et al. On monomial algebras , 1988, Semigroup Algebras.
[4] Rafael H. Villarreal,et al. On systems of binomials in the ideal of a toric variety , 2002 .
[5] Rafael H. Villarreal,et al. Complete intersections in affine monomial curves , 2005 .
[6] Michael Clausen,et al. Efficient Solution of Linear Diophantine Equations , 1989, J. Symb. Comput..
[7] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[8] Arjen K. Lenstra,et al. Hard Equality Constrained Integer Knapsacks , 2004, Math. Oper. Res..
[9] C. Delorme,et al. Sous-monoïdes d’intersection complète de $N$ , 1976 .
[10] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[11] Jürgen Herzog,et al. Generators and relations of abelian semigroups and semigroup rings , 1970 .
[12] Apostolos Thoma,et al. Complete intersection lattice ideals , 2004 .
[13] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.
[14] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.