A normally closed in-channel micro check valve

We present here the first surface-micromachined, normally closed, in-channel, Parylene check valve. This device is fabricated monolithically on a silicon substrate using a five-layer Parylene process. The operating structure of the check valve is a circular sealing plate on top of a ring-shaped valve seat. The sealing plate is center-anchored on top of a chamber diaphragm that is vacuum-collapsed to the bottom of the chamber in order to achieve a normally closed position. A thin gold layer on the roughened valve seat surface is used to reduce stiction between the sealing plate and the valve seat. We have achieved an in-channel check valve with a cracking (opening) pressure of 20/spl sim/40 kPa under forward bias and no measurable leakage under reverse bias up to 270 kPa. Using this design, this valve performs well in two-phase microfluidic systems (i.e. microchannel flows containing gas, liquid, or gas/liquid mixture).

[1]  Shuichi Shoji,et al.  Fluids for Sensor Systems , 1998 .

[2]  Y. Tai,et al.  A Parylene micro check valve , 1999 .

[3]  Carlos H. Mastrangelo,et al.  Surface Force Induced Failures in Microelectromechanical Systems , 1998 .

[4]  M. Burns,et al.  Microfabricated capillarity-driven stop valve and sample injector , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.