Short lists with short programs in short time

Given a machine U, a c-short program for x is a string p such that U(p) = x and the length of p is bounded by c + (the length of a shortest program for x). We show that for any standard Turing machine, it is possible to compute in polynomial time on input x a list of polynomial size guaranteed to contain a $${\operatorname{O}\bigl({\mathrm{log}}|x|\bigr)}$$O(log|x|)-short program for x. We also show that there exists a computable function that maps every x to a list of size |x|2 containing a $${\operatorname{O}\bigl(1\bigr)}$$O(1)-short program for x. This is essentially optimal because we prove that for each such function there is a c and infinitely many x for which the list has size at least c|x|2. Finally we show that for some standard machines, computable functions generating lists with 0-short programs must have infinitely often list sizes proportional to 2|x|.

[1]  Alexander Shen Game Arguments in Computability Theory and Algorithmic Information Theory , 2012, CiE.

[2]  Marius Zimand,et al.  Symmetry of Information and Bounds on Nonuniform Randomness Extraction via Kolmogorov Extractors , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[3]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[4]  Lance Fortnow,et al.  Resource-Bounded Kolmogorov Complexity Revisited , 2001, SIAM J. Comput..

[5]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[6]  Marius Zimand,et al.  Generating Kolmogorov random strings from sources with limited independence , 2013, J. Log. Comput..

[7]  Daniil Musatov,et al.  Space-Bounded Kolmogorov Extractors , 2012, CSR.

[8]  Nikolai K. Vereshchagin,et al.  Kolmogorov Complexity and Games , 2008, Bull. EATCS.

[9]  Lance Fortnow,et al.  Extracting Kolmogorov complexity with applications to dimension zero-one laws , 2006, Inf. Comput..

[10]  Marius Zimand,et al.  Two Sources Are Better than One for Increasing the Kolmogorov Complexity of Infinite Sequences , 2007, Theory of Computing Systems.

[11]  Helmut Schwichtenberg,et al.  Logic of Computation , 1997, NATO ASI Series.

[12]  Marius Zimand Short Lists with Short Programs in Short Time - A Short Proof , 2014, CiE.

[13]  Amnon Ta-Shma,et al.  On Extracting Randomness From Weak Random Sources , 1995, Electron. Colloquium Comput. Complex..

[14]  Nikolai K. Vereshchagin Algorithmic Minimal Sufficient Statistics: a New Definition , 2010, Electron. Colloquium Comput. Complex..

[15]  N. V. Vinodchandran,et al.  Kolmogorov Complexity in Randomness Extraction , 2011, TOCT.

[16]  Bruno Bauwens,et al.  Complexity of Complexity and Strings with Maximal Plain and Prefix Kolmogorov Complexity , 2014, J. Symb. Log..

[17]  Alexander Shen,et al.  Variations on Muchnik’s Conditional Complexity Theorem , 2009, Theory of Computing Systems.

[18]  Nikolai K. Vereshchagin Algorithmic Minimal Sufficient Statistics: a New Approach , 2014, Theory of Computing Systems.

[19]  Jason Teutsch,et al.  Short lists for shortest descriptions in short time , 2012, computational complexity.

[20]  GuruswamiVenkatesan,et al.  Unbalanced expanders and randomness extractors from Parvaresh--Vardy codes , 2009 .

[21]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[22]  Lance Fortnow,et al.  Extracting Kolmogorov complexity with applications to dimension zero-one laws , 2011, Inf. Comput..

[23]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[24]  P. Hall On Representatives of Subsets , 1935 .

[25]  Lance Fortnow,et al.  Enumerations of the Kolmogorov function , 2006, Journal of Symbolic Logic.

[26]  Nikolai K. Vereshchagin,et al.  Game interpretation of Kolmogorov complexity , 2010, ArXiv.

[27]  Amnon Ta-Shma,et al.  Lossless Condensers, Unbalanced Expanders, And Extractors , 2007, Comb..

[28]  Nikolai K. Vereshchagin Algorithmic Minimal Sufficient Statistic Revisited , 2009, CiE.

[29]  Jaikumar Radhakrishnan,et al.  Bounds for Dispersers, Extractors, and Depth-Two Superconcentrators , 2000, SIAM J. Discret. Math..

[30]  Claus-Peter Schnorr,et al.  Optimal enumerations and optimal gödel numberings , 1974, Mathematical systems theory.

[31]  Avi Wigderson,et al.  Randomness conductors and constant-degree lossless expanders , 2002, STOC '02.

[32]  Bruno Bauwens,et al.  Computability in statistical hypotheses testing, and characterizations of independence and directed influences in time series using Kolmogorov complexity , 2010 .

[33]  V. Rich Personal communication , 1989, Nature.

[34]  Jason Teutsch Short lists for shorter programs in short time , 2012, ArXiv.

[35]  Nikolai K. Vereshchagin,et al.  Short Lists with Short Programs in Short Time , 2013, Computational Complexity Conference.

[36]  Bruno Bauwens,et al.  Complexity of Complexity and Maximal Plain versus Prefix-Free Kolmogorov Complexity , 2012, ICALP.

[37]  Daniil Musatov,et al.  Improving the Space-Bounded Version of Muchnik’s Conditional Complexity Theorem via “Naive” Derandomization , 2011, Theory of Computing Systems.

[38]  Daniil Musatov,et al.  Improving the Space-Bounded Version of Muchnik’s Conditional Complexity Theorem via “Naive” Derandomization , 2010, Theory of Computing Systems.

[39]  Andrej Muchnik,et al.  Conditional complexity and codes , 2002, Theor. Comput. Sci..

[40]  A. Lachlan On Some Games Which Are Relevant to the Theory of Recursively Enumerable Sets , 1970 .

[41]  Marius Zimand,et al.  Possibilities and impossibilities in Kolmogorov complexity extraction , 2011, ArXiv.

[42]  Lance Fortnow,et al.  Resource-Bounded Kolmogorov Complexity Revisited , 1997, STACS.