Global second‐order sliding mode control for nonlinear uncertain systems

Second‐order sliding mode (SOSM) control is used to keep exactly a constraint σ of the second relative degree or to avoid chattering phenomenon. Yet, the traditional SOSM controllers are designed based upon the assumption that the uncertainties or their derivatives are bounded by positive constants. In this paper, a global SOSM controller is designed for a general class of single‐input–single‐output nonlinear systems with uncertainties bounded by positive functions. Moreover, a variable‐gain robust exact differentiator is developed such that the SOSM controllers with finite‐time convergence can also be implemented even when the derivative of the constraint σ is unavailable. Simulation results are given to show the effectiveness of the proposed method.

[1]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[2]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[3]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[4]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[5]  K. Deimling Multivalued Differential Equations , 1992 .

[6]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[7]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[8]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[9]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[10]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[11]  G. Bartolini,et al.  Chattering avoidance by second-order sliding mode control , 1998, IEEE Trans. Autom. Control..

[12]  Hao-Chi Chang,et al.  Sliding mode control on electro-mechanical systems , 1999 .

[13]  Giorgio Bartolini,et al.  Global stabilization for nonlinear uncertain systems with unmodeled actuator dynamics , 2001, IEEE Trans. Autom. Control..

[14]  Liu Hsu,et al.  MODEL-REFERENCE OUTPUT-FEEDBACK SLIDING MODE CONTROLLER FOR A CLASS OF MULTIVARIABLE NONLINEAR SYSTEMS , 2008 .

[15]  Yuri B. Shtessel,et al.  AN ASYMPTOTIC SECOND‐ORDER SMOOTH SLIDING MODE CONTROL , 2003 .

[16]  Giorgio Bartolini,et al.  An improved second-order sliding-mode control scheme robust against the measurement noise , 2004, IEEE Transactions on Automatic Control.

[17]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[18]  Arie Levant,et al.  Principles of 2-sliding mode design , 2007, Autom..

[19]  L. Fridman,et al.  Exact state estimation for linear systems with unknown inputs based on hierarchical super‐twisting algorithm , 2007 .

[20]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[21]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[22]  Liu Hsu,et al.  Design of First-Order Approximation Filters for Sliding-Mode Control of Uncertain Systems , 2008, IEEE Transactions on Industrial Electronics.

[23]  Yuri B. Shtessel,et al.  Higher order sliding modes , 2008 .

[24]  Leonid M. Fridman,et al.  Variable Gain Super-Twisting Sliding Mode Control , 2012, IEEE Transactions on Automatic Control.

[25]  Yuanli Cai,et al.  High‐order sliding mode control design based on adaptive terminal sliding mode , 2013 .

[26]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[27]  Arie Levant,et al.  Globally convergent fast exact differentiator with variable gains , 2014, 2014 European Control Conference (ECC).

[28]  Jaime A. Moreno,et al.  On strict Lyapunov functions for some non-homogeneous super-twisting algorithms , 2014, J. Frankl. Inst..

[29]  Wei Xing Zheng,et al.  Second-Order Sliding Mode Control for Nonlinear Uncertain Systems Bounded by Positive Functions , 2015, IEEE Transactions on Industrial Electronics.

[30]  A. Levant,et al.  Uncertain disturbances’ attenuation by homogeneous multi-input multi-output sliding mode control and its discretisation , 2015 .

[31]  Lei Guo,et al.  Disturbance-Observer-Based Control and Related Methods—An Overview , 2016, IEEE Transactions on Industrial Electronics.

[32]  Wei Xing Zheng,et al.  Nonsingular terminal sliding mode control of nonlinear second‐order systems with input saturation , 2016 .

[33]  Suiyang Khoo,et al.  Robust finite-time tracking control of nonholonomic mobile robots without velocity measurements , 2016, Int. J. Control.

[34]  Khadija Dehri,et al.  Discrete second‐order sliding mode control based on optimal sliding function vector for multivariable systems with input–output representation , 2016 .

[35]  Liu Hsu,et al.  Output-Feedback Multivariable Global Variable Gain Super-Twisting Algorithm , 2017, IEEE Transactions on Automatic Control.

[36]  Yuri B. Shtessel,et al.  Twisting sliding mode control with adaptation: Lyapunov design, methodology and application , 2017, Autom..

[37]  Franck Plestan,et al.  Output feedback relay control in the second‐order sliding mode context with application to an electropneumatic system , 2017 .

[38]  Shengyuan Xu,et al.  Robust output-feedback finite-time regulator of systems with mismatched uncertainties bounded by positive functions , 2017 .

[39]  Leonid Fridman,et al.  Combined backstepping and HOSM control design for a class of nonlinear MIMO systems , 2017 .

[40]  Leonid M. Fridman,et al.  Global and exact HOSM differentiator with dynamic gains for output-feedback sliding mode control , 2017, Autom..

[41]  Junwei Lu,et al.  Improved disturbance rejection for predictor-based control of MIMO linear systems with input delay , 2018, Int. J. Syst. Sci..

[42]  Shengyuan Xu,et al.  Finite‐time tracking control of uncertain nonholonomic systems by state and output feedback , 2018 .