Atomistic insight into viscosity and density of silicate melts under pressure

A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates viscosity and affects compressibility. While viscosity of depolymerized silicate melts increases with pressure consistent with the free-volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3-5 GPa, above which it turns over to normal (positive) pressure dependence. Here we show that the viscosity turnover in polymerized liquids corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in high compressibility, continual breakup of tetrahedral connectivity and viscosity decrease with increasing pressure. Above the turnover pressure, silicon and aluminium coordination increases to allow further packing, with increasing viscosity and density. These structural responses prescribe the distribution of melt viscosity and density with depth and play an important role in magma transport in terrestrial planetary interiors.

[1]  L. Skinner,et al.  Joint diffraction and modeling approach to the structure of liquid alumina , 2013 .

[2]  H. Mao,et al.  Formation and structure of a dense octahedral glass. , 2004, Physical review letters.

[3]  W. Lysenko Equilibrium phase-space distributions and space charge limits in linacs , 1977 .

[4]  Makoto Kinoshita,et al.  Refractive index of densified silica glass , 1993 .

[5]  P. Paradis,et al.  Non-contact Thermophysical Property Measurements of Liquid and Supercooled Platinum , 2004 .

[6]  C. Lesher,et al.  Self-diffusion of Si and O in diopside-anorthite melt at high pressures , 2003 .

[7]  P. McMillan,et al.  Silicon and Oxygen Self-Diffusivities in Silicate Liquids Measured to 15 Gigapascals and 2800 Kelvin , 1997 .

[8]  H. Taniguchi Entropy dependence of viscosity and the glass-transition temperature of melts in the system diopside-anorthite , 1992 .

[9]  H. Terasaki,et al.  Ponded melt at the boundary between the lithosphere and asthenosphere , 2013 .

[10]  C. Benmore,et al.  Structural and topological changes in silica glass at pressure. , 2010 .

[11]  Robert M. Hazen,et al.  High‐Pressure Research in Mineral Physics , 1988 .

[12]  G. Mountjoy,et al.  Structural organisation in oxide glasses from molecular dynamics modelling , 2011 .

[13]  C. Benmore,et al.  Diffraction study of calcium aluminate glasses and melts: II. High energy x-ray diffraction on melts , 2008 .

[14]  Donald L. Turcotte,et al.  Mantle Convection in the Earth and Planets , 2001 .

[15]  D. McKenzie,et al.  The Generation and Compaction of Partially Molten Rock , 1984 .

[16]  P. Tackley,et al.  Planforms of self‐consistently generated plates in 3D spherical geometry , 2008 .

[17]  D. Dingwell,et al.  Peraluminous viscosity maxima in Na2OAl2O3SiO2 liquids: The role of triclusters in tectosilicate melts , 1997 .

[18]  Jincheng Du,et al.  A molecular dynamics simulation interpretation of neutron and x-ray diffraction measurements on single phase Y2O3–Al2O3 glasses , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  D. Price,et al.  Intermediate-range order in permanently densified GeO2 glass. , 2003, Physical review letters.

[20]  Jincheng Du,et al.  Understanding lanthanum aluminate glass structure by correlating molecular dynamics simulation results with neutron and X-ray scattering data , 2007 .

[21]  D. Neuville,et al.  Chemical dependence of network topology of calcium aluminosilicate glasses: a computer simulation study. , 2003 .

[22]  S. Sutton,et al.  Structure of liquid iron at pressures up to 58 GPa. , 2004, Physical review letters.

[23]  T. Kikegawa,et al.  Pressure and temperature dependence of the viscosity of a NaAlSi2O6 melt , 2011, PCM 2011.

[24]  B. Mysen,et al.  The Structure of Silicate Melts: Implications for Chemical and Physical Properties of Natural Magma (Paper 2R0405) , 1982 .

[25]  Wenge Yang,et al.  High-pressure x-ray diffraction studies on the structure of liquid silicate using a Paris-Edinburgh type large volume press. , 2011, The Review of scientific instruments.

[26]  T. Dunn Oxygen diffusion in three silicate melts along the join diopside-anorthite , 1982 .

[27]  Tomoko Sato,et al.  Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. , 2008, Physical review letters.

[28]  C. Benmore,et al.  Diffraction study of calcium aluminate glasses and melts: I. High energy x-ray and neutron diffraction on glasses around the eutectic composition , 2008 .

[29]  C. Benmore,et al.  A neutron and x-ray diffraction study of calcium aluminate glasses. , 2003 .

[30]  M. Rivers,et al.  Ultrasonic studies of silicate melts , 1987 .

[31]  Hejiu Hui,et al.  Viscosity of Silicate Melts. , 2008 .

[32]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[33]  Richard Weber,et al.  Structure of high alumina content Al2O3-SiO2 composition glasses. , 2008, The journal of physical chemistry. B.

[34]  J. Stebbins,et al.  NMR evidence for excess non-bridging oxygen in an aluminosilicate glass , 1997, Nature.

[35]  H. Terasaki,et al.  Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities , 2007 .

[36]  H. Terasaki,et al.  The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa , 2003 .

[37]  M. Hirschmann,et al.  Letter. Aluminum coordination and the densification of high-pressure aluminosilicate glasses , 2005 .

[38]  H. Terasaki,et al.  Viscosity of silicate melts in CaMgSi2O6–NaAlSi2O6 system at high pressure , 2005 .

[39]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[40]  S. Karato,et al.  Compositional effect on the pressure derivatives of bulk modulus of silicate melts , 2006 .

[41]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[42]  H. Terasaki,et al.  In situ viscosity measurements of albite melt under high pressure , 2002 .

[43]  S. Elliott Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses , 1995 .

[44]  P. Kidkhunthod,et al.  Structure of praseodymium and neodymium gallate glasses , 2011 .

[45]  P. Richet,et al.  Silicate melts: The “anomalous” pressure dependence of the viscosity , 1995 .

[46]  Hans-Joachim Bungartz,et al.  Molecular Dynamics Simulation , 2015 .

[47]  L. Skinner,et al.  Structure and triclustering in Ba-Al-O glass , 2012 .

[48]  W. Utsumi,et al.  Transformations in the Intermediate-Range Structure of SiO~2 Glass under High Pressure and Temperature , 2004 .

[49]  H. Terasaki,et al.  Viscosity of albite melt at high pressure and high temperature , 2002 .

[50]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[51]  G. Cuello,et al.  Mg coordination in a MgSiO 3 glass using neutron diffraction coupled with isotopic substitution , 2011 .

[52]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[53]  J. Haile Molecular Dynamics Simulation , 1992 .

[54]  A. Soper,et al.  On the use of modification functions when Fourier transforming total scattering data , 2012 .

[55]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[56]  L. Skinner,et al.  Structure of molten CaSiO3: neutron diffraction isotope substitution with aerodynamic levitation and molecular dynamics study. , 2012, The journal of physical chemistry. B.

[57]  D. Lacks,et al.  Molecular dynamics investigation of MgO–CaO–SiO2 liquids: Influence of pressure and composition on density and transport properties , 2010 .

[58]  N. Coltice,et al.  Global warming of the mantle beneath continents back to the Archaean , 2009 .

[59]  Yanbin Wang,et al.  High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation , 2004 .

[60]  B. Mysen,et al.  A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt , 2002 .

[61]  S. Karato,et al.  A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures , 2011 .

[62]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[63]  Thorpe,et al.  Elastic properties of glasses. , 1985, Physical review letters.

[64]  Jincheng Du,et al.  The medium range structure of sodium silicate glasses: a molecular dynamics simulation , 2004 .

[65]  J. M. Parker,et al.  Neutron diffraction analysis of the atomic short range order in lead gallate glasses , 1998 .

[66]  Yutaka Abe,et al.  Thermal and chemical evolution of the terrestrial magma ocean , 1997 .

[67]  W. Crichton,et al.  Structure of GeO(2) glass at pressures up to 8.6 GPa , 2010 .

[68]  C. Angell,et al.  Molecular dynamics studies of the vitreous state: Simple ionic systems and silica , 1976 .

[69]  Dean A. J. Whittaker,et al.  Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[70]  E. Ohtani,et al.  Viscosity of the albite melt to 7 GPa at 2000 K , 2000 .