Linear time tree codes

This paper deals with a new method of coding unlabeled trees, the resulting code being a string of integers. For a tree onn vertices both the coding and the decoding algorithm work in time 0(n). Givenn the “mean length” of code strings is shorter than with other existing integer string codes. The new coding method is used to derive an algorithm for generating all unlabeled trees of a given size without repetition.ZusammenfassungIn dieser Arbeit stellen wir ein neues Kodierungsverfahren für freie Bäume vor. Wie bei anderen Methoden werden Tupel aus ganzen Zahlen zur Kodierung verwendet. Sowohl der Kodierungs- als auch der Dekodierungsalgorithmus arbeiten in Zeit 0(n), wennn die Knotenzahl bedeutet. Die “mittlere Kodelänge” des neuen Verfahrens ist kleiner als bei vergleichbaren bekannten Verfahren. Das Verfahren wird zur Herleitung eines Algorithmus verwendet, der die Kodetupel aller freien Bäume gegebenen Umfangs ohne Wiederholung herstellt.

[1]  S. Chaiken,et al.  An Optimal Diagonal Tree Code , 1983 .

[2]  Ronald C. Read,et al.  THE CODING OF VARIOUS KINDS OF UNLABELED TREES , 1972 .

[3]  Ye.A Smolenskii A method for the linear recording of graphs , 1963 .

[4]  Shmuel Zaks,et al.  Generating Trees and Other Combinatorial Objects Lexicographically , 1979, SIAM J. Comput..

[5]  R. Read Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .

[6]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[7]  A. K. Dewdney,et al.  Diagonal Tree Codes , 1979, Inf. Control..

[8]  A. Jovanovic,et al.  A new algorithm for solving the tree isomorphism problem , 2005, Computing.

[9]  Sandra Mitchell Hedetniemi,et al.  Constant Time Generation of Rooted Trees , 1980, SIAM J. Comput..

[10]  Nenad Trinajstić,et al.  Computer enumeration and generation of trees and rooted trees , 1981, J. Chem. Inf. Comput. Sci..

[11]  Shmuel Zaks,et al.  Lexicographic Generation of Ordered Trees , 1980, Theor. Comput. Sci..

[12]  Robert W. Robinson,et al.  The distribution of degrees in a large random tree , 1975, Discret. Math..

[13]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[14]  S. Hakimi,et al.  The distance matrix of a graph and its tree realization , 1972 .

[15]  Robert E. Tarjan,et al.  Isomorphism of Planar Graphs , 1972, Complexity of Computer Computations.