Technical Report No . 201 702 February 201 7 THE ACHIEVABLE PERFORMANCE OF CONVEX DEMIXING

Demixing is the problem of identifying multiple structured signals from a superimposed, undersampled, and noisy observation. This work analyzes a general framework, based on convex optimization, for solving demixing problems. When the constituent signals follow a generic incoherence model, this analysis leads to precise recovery guarantees. These results admit an attractive interpretation: each signal possesses an intrinsic degrees-of-freedom parameter, and demixing can succeed if and only if the dimension of the observation exceeds the total degrees of freedom present in the observation.

[1]  Liam Paninski,et al.  Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions , 2013, NIPS.

[2]  Joel A. Tropp,et al.  From Steiner Formulas for Cones to Concentration of Intrinsic Volumes , 2013, Discret. Comput. Geom..

[3]  Rina Foygel,et al.  Corrupted Sensing: Novel Guarantees for Separating Structured Signals , 2013, IEEE Transactions on Information Theory.

[4]  Mihailo Stojnic,et al.  A framework to characterize performance of LASSO algorithms , 2013, ArXiv.

[5]  Joel A. Tropp,et al.  Living on the edge: A geometric theory of phase transitions in convex optimization , 2013, ArXiv.

[6]  Joel A. Tropp,et al.  Sharp recovery bounds for convex deconvolution, with applications , 2012, ArXiv.

[7]  Christoph Studer,et al.  Probabilistic Recovery Guarantees for Sparsely Corrupted Signals , 2012, IEEE Transactions on Information Theory.

[8]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Aswin C. Sankaranarayanan,et al.  SpaRCS: Recovering low-rank and sparse matrices from compressive measurements , 2011, NIPS.

[10]  Benjamin Recht,et al.  Probability of unique integer solution to a system of linear equations , 2011, Eur. J. Oper. Res..

[11]  Ali Jalali,et al.  A Dirty Model for Multiple Sparse Regression , 2011, IEEE Transactions on Information Theory.

[12]  Yudong Chen,et al.  Clustering Partially Observed Graphs via Convex Optimization , 2011, ICML.

[13]  Xiaodong Li,et al.  Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions , 2011, Constructive Approximation.

[14]  Ali Jalali,et al.  Low-Rank Matrix Recovery From Errors and Erasures , 2013, IEEE Transactions on Information Theory.

[15]  Helmut Bölcskei,et al.  Recovery of Sparsely Corrupted Signals , 2011, IEEE Transactions on Information Theory.

[16]  Trac D. Tran,et al.  Exact Recoverability From Dense Corrupted Observations via $\ell _{1}$-Minimization , 2011, IEEE Transactions on Information Theory.

[17]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.

[18]  Ali Jalali,et al.  A Dirty Model for Multi-task Learning , 2010, NIPS.

[19]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[20]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[21]  Andrea Montanari,et al.  The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.

[22]  Pablo A. Parrilo,et al.  Latent variable graphical model selection via convex optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[25]  A. Willsky,et al.  Sparse and low-rank matrix decompositions , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[26]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[27]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[28]  David L. Donoho,et al.  Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications , 2008, Discret. Comput. Geom..

[29]  Babak Hassibi,et al.  On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements , 2008, IEEE Transactions on Signal Processing.

[30]  Mohamed-Jalal Fadili,et al.  Morphological Component Analysis: An Adaptive Thresholding Strategy , 2007, IEEE Transactions on Image Processing.

[31]  Mohamed-Jalal Fadili,et al.  Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.

[32]  J. Tropp On the Linear Independence of Spikes and Sines , 2007, 0709.0517.

[33]  F. Mezzadri How to generate random matrices from the classical compact groups , 2006, math-ph/0609050.

[34]  Michael Elad,et al.  Morphological diversity and source separation , 2006, IEEE Signal Processing Letters.

[35]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[36]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[37]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[38]  A.S. Willsky,et al.  Source localization by enforcing sparsity through a Laplacian prior: an SVD-based approach , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[39]  V. Temlyakov Nonlinear Methods of Approximation , 2003, Found. Comput. Math..

[40]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[41]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[42]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[43]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[44]  P Mcmullen,et al.  Non-linear angle-sum relations for polyhedral cones and polytopes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[45]  V. Klee Separation properties of convex cones , 1955 .

[46]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[47]  Michael B. McCoy A geometric analysis of convex demixing , 2013 .

[48]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[49]  S. Mallat A wavelet tour of signal processing , 1998 .

[50]  L. Santaló Integral geometry and geometric probability , 1976 .