Complex variable step method for sensitivity analysis of effective properties in multi-field micromechanics

This paper shows an approach to computing the effective properties of multi-field composite materials and their first-order sensitivities. The approach is based on the application of the complex variable step method for the micromechanical Mori–Tanaka scheme; hence, the first-order sensitivities can be computed in the same analysis. Numerical results are presented for magnetoelectroelastic properties of piezoelectric–piezomagnetic composite materials. A comparison of the results to those obtained by other methods shows that the presented sensitivity analysis gives highly accurate and stable results, but the values of the results are dependent on the applied micromechanical model. The presented approach may be used to solve ill-posed problems of optimal design or identification in coupled fields micromechanics.

[1]  Closed-form solutions to the effective properties of fibrous magnetoelectric composites and their applications , 2012 .

[2]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[3]  H. Nasser,et al.  Sensitivities of effective properties computed using micromechanics differential schemes and high-order Taylor series: Application to piezo-polymer composites , 2010 .

[4]  G. M. Faeth Request for Nomination of Articles for the Special 100th Anniversary of Flight Issue , 2000 .

[5]  Walter Gautschi,et al.  Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.

[6]  D. Cacuci,et al.  SENSITIVITY and UNCERTAINTY ANALYSIS , 2003 .

[7]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  Brian H. Dennis,et al.  Improved sensitivity analysis using a complex variable semi-analytical method , 2010 .

[9]  Rafael Abreu,et al.  On the generalization of the Complex Step Method , 2013, J. Comput. Appl. Math..

[10]  A. Arockiarajan,et al.  Thermo-electro-mechanical response of 1–3–2 piezoelectric composites: effect of fiber orientations , 2012 .

[11]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[12]  R. Mclaughlin A study of the differential scheme for composite materials , 1977 .

[13]  Xiao-Wei Gao,et al.  A new inverse analysis approach for multi-region heat conduction BEM using complex-variable-differentiation method * , 2005 .

[14]  M. Taya,et al.  An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[16]  Harry R. Millwater,et al.  COMPLEX VARIABLE METHODS FOR SHAPE SENSITIVITY OF FINITE ELEMENT MODELS (PREPRINT) , 2011 .

[17]  J. Callahan Advanced Calculus: A Geometric View , 2010 .

[18]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .

[19]  Y. Koutsawa,et al.  Automatic differentiation of micromechanics incremental schemes for coupled fields composite materials: Effective properties and their sensitivities , 2011 .

[20]  N. Kikuchi,et al.  Optimal design of piezoelectric microstructures , 1997 .

[21]  Y. Koutsawa,et al.  Generalization of the micromechanics multi-coating approach to coupled fields composite materials with eigenfields: Effective properties , 2011 .

[22]  J. N. Lyness,et al.  Numerical Differentiation of Analytic Functions , 1967 .

[23]  A. Muliana,et al.  Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites , 2013 .

[24]  Gregory M. Odegard,et al.  Constitutive Modeling of Piezoelectric Polymer Composites , 2004 .

[25]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .

[26]  Jin H. Huang,et al.  Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions , 1998 .

[27]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[28]  Kapil Khandelwal,et al.  Complex step derivative approximation for numerical evaluation of tangent moduli , 2014 .

[29]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[30]  Jacob Aboudi,et al.  Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites , 2001 .

[31]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[32]  Tsung-Lin Wu,et al.  Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases , 2000 .

[33]  Lisa G. Stanley,et al.  Design Sensitivity Analysis: Computational Issues on Sensitivity Equation Methods , 2002 .

[34]  A. Soh,et al.  The effective magnetoelectroelastic moduli of matrix-based multiferroic composites , 2006 .

[35]  H. Dumontet,et al.  A micromechanical iterative approach for the behavior of polydispersed composites , 2008 .

[36]  Joaquim R. R. A. Martins,et al.  AN AUTOMATED METHOD FOR SENSITIVITY ANALYSIS USING COMPLEX VARIABLES , 2000 .

[37]  Tsung-Lin Wu Micromechanics determination of electroelastic properties of piezoelectric materials containing voids , 2000 .

[38]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[39]  Hua Wu,et al.  Parametric sensitivity in chemical systems , 1999 .

[40]  Jin H. Huang,et al.  The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectric–piezomagnetic continuous fiber reinforced composites , 2000 .

[41]  P. Viéville,et al.  Modelling effective properties of composite materials using the inclusion concept. General considerations , 2006 .

[42]  K. Atkinson Elementary numerical analysis , 1985 .

[43]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[44]  Harry R. Millwater,et al.  Fatigue sensitivity analysis using complex variable methods , 2012 .

[45]  P. Fedeliński,et al.  BOUNDARY ELEMENT METHOD MODELLING OF NANOCOMPOSITES , 2014 .

[46]  J. Crassidis,et al.  Extensions of the first and second complex-step derivative approximations , 2008 .

[47]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials—III. self-consistent model , 1965 .

[48]  H. Sodano,et al.  Multi-Inclusion modeling of multiphase piezoelectric composites , 2013 .

[49]  Awad H. Al-Mohy,et al.  The complex step approximation to the Fréchet derivative of a matrix function , 2009, Numerical Algorithms.

[50]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[51]  Patrick Le Tallec,et al.  Numerical methods in sensitivity analysis and shape optimization , 2002, Modeling and simulation in science, engineering and technology.

[52]  Kechao Zhou,et al.  Development, modeling and application of piezoelectric fiber composites , 2013 .

[53]  Magdi El Messiry,et al.  Theoretical analysis of natural fiber volume fraction of reinforced composites , 2013 .