Monotonicity and Efficient Computation of Optimal Dichotomous Search

Abstract We consider the problem of designing an efficient dichotomous search in order to locate an object which lies on a given interval. A query at a point of the interval reveals whether the object is to its “left” or to its “right”. By successively placing queries at points of the interval it narrows down until the searcher can identify a unit interval containing the object. The objective is to minimize the expected cost of the search. We analyze the problem for a wide range of cost structures, generalizing several known results. In particular we extend a monotonicity theorem of Knuth showing that it also holds under weaker assumptions. Consequently, the computation effort needed to solve the problem is reduced.

[1]  S. Zacks,et al.  Sequential Search of an Optimal Dosage, I , 1973 .

[2]  Refael Hassin A Dichotomous Search for a Geometric Random Variable , 1984, Oper. Res..

[3]  LAWRENCE L. LARMORE Height Restricted Optimal Binary Trees , 1987, SIAM J. Comput..

[4]  Adriano M. Garsia,et al.  A New Algorithm for Minimum Cost Binary Trees , 1977, SIAM J. Comput..

[5]  T. C. Hu,et al.  Path Length of Binary Search Trees. , 1972 .

[6]  Frances F. Yao,et al.  Speed-Up in Dynamic Programming , 1982 .

[7]  L. Gotlieb Optimal Multi-Way Search Trees , 1981, SIAM J. Comput..

[8]  E. F. Moore,et al.  Variable-length binary encodings , 1959 .

[9]  Russell L. Wessner Optimal Alphabetic Search Trees With Restricted Maximal Height , 1976, Inf. Process. Lett..

[10]  Satoru Murakami A DICHOTOMOUS SEARCH , 1971 .

[11]  F. Frances Yao,et al.  Efficient dynamic programming using quadrangle inequalities , 1980, STOC '80.

[12]  F. A. Bostock,et al.  A High–Low search game on the unit interval , 1985 .

[13]  Michelle L. Wachs On an Efficient Dynamic Programming Technique of F. F. Yao , 1989, J. Algorithms.

[14]  S. Murakami A DICHOTOMOUS SEARCH WITH TRAVEL COST , 1976 .

[15]  R. Morris Some Theorems on Sorting , 1969 .

[16]  Alon Itai,et al.  Optimal Alphabetic Trees , 1976, SIAM J. Comput..

[17]  Michelle L. Wachs,et al.  Binary Search on a Tape , 1987, SIAM J. Comput..

[18]  Scott H. Cameron,et al.  Letter to the Editor-A Search Problem , 1964 .

[19]  T. C. Hu,et al.  Optimal Computer Search Trees and Variable-Length Alphabetical Codes , 1971 .

[20]  B. H. Eichhorn Sequential search of an optimal dosage: Non‐bayesian methods , 1973 .

[21]  Steve Alpern Search for point in interval, with high–low feedback , 1985 .

[22]  M. R. Garey,et al.  Optimal Binary Search Trees with Restricted Maximal Depth , 1974, SIAM J. Comput..

[23]  K. Hlnderer On dichotomous search with direction-dependent costs for a uniformly hidden object , 1990 .

[24]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..