A GREY-BOX MODELING APPROACH FOR THE REDUCTION OF NONLINEAR SYSTEMS 1 1This work has been supported by the European Union within the Marie-Curie Training Network PROMATCH under the grant number MRTN-CT-2004-512441.
暂无分享,去创建一个
Wolfgang Marquardt | Leyla Özkan | Jobert Ludlage | Siep Weiland | Reinout Romijn | S. Weiland | Leyla Özkan | W. Marquardt | J. Ludlage | R. Romijn
[1] P. Astrid,et al. Reduction of process simulation models : a proper orthogonal decomposition approach , 2004 .
[2] Karlene A. Hoo,et al. Wavelet-based model reduction of distributed parameter systems , 2000 .
[3] S. Shvartsman,et al. Nonlinear model reduction for control of distributed systems: A computer-assisted study , 1998 .
[4] J. van den Berg,et al. Model reduction for dynamic real-time optimization of chemical processes , 2005 .
[5] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..
[6] Mark A. Kramer,et al. Modeling chemical processes using prior knowledge and neural networks , 1994 .
[7] Lyle H. Ungar,et al. A hybrid neural network‐first principles approach to process modeling , 1992 .
[8] Muruhan Rathinam,et al. A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..
[9] W. Ray,et al. Identification and control of distributed parameter systems by means of the singular value decomposition , 1995 .
[10] Karlene A. Hoo,et al. Low-order Control-relevant Models for A Class of Distributed Parameter Systems , 2001 .
[11] D. Sorensen,et al. Approximation of large-scale dynamical systems: an overview , 2004 .