Chaotic hyperjerk systems
暂无分享,去创建一个
[1] J. Sprott. Chaos and time-series analysis , 2001 .
[2] Alain Arneodo,et al. Transition to stochasticity for a class of forced oscillators , 1979 .
[3] Julien Clinton Sprott,et al. A comparison of correlation and Lyapunov dimensions , 2005 .
[4] Konstantinos E. Chlouverakis,et al. Color Maps of the Kaplan-yorke Dimension in Optically Driven Lasers: Maximizing the Dimension and Almost-Hamiltonian Chaos , 2005, Int. J. Bifurc. Chaos.
[5] Julien Clinton Sprott,et al. Algebraically Simple Chaotic Flows , 2000 .
[6] Christophe Letellier,et al. Global modeling of the Rössler system from the /z-variable , 2003 .
[7] Julien Clinton Sprott,et al. Improved Correlation Dimension Calculation , 2000, Int. J. Bifurc. Chaos.
[8] Ralf Eichhorn,et al. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows , 1998 .
[9] S. Schot,et al. Jerk: The time rate of change of acceleration , 1978 .
[10] O. Rössler. An equation for hyperchaos , 1979 .
[11] Julien Clinton Sprott,et al. A new class of chaotic circuit , 2000 .
[12] Stefan J. Linz,et al. Nonlinear dynamical models and jerky motion , 1997 .
[13] M. Hirsch,et al. Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .