Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking

Although there are well-known limitations of the human cognitive system in performing two tasks simultaneously (dual-tasking) or alternatingly (task-switching), the question for a common vs. distinct neural basis of these multitasking limitations is still open. We performed two Activation Likelihood Estimation meta-analyses of neuroimaging studies on dual-tasking or task-switching and tested for commonalities and differences in the brain regions associated with either domain. We found a common core network related to multitasking comprising bilateral intraparietal sulcus (IPS), left dorsal premotor cortex (dPMC), and right anterior insula. Meta-analytic contrasts revealed eight fronto-parietal clusters more consistently activated in dual-tasking (bilateral frontal operculum, dPMC, and anterior IPS, left inferior frontal sulcus and left inferior frontal gyrus) and, conversely, four clusters (left inferior frontal junction, posterior IPS, and precuneus as well as frontomedial cortex) more consistently activated in task-switching. Together with sub-analyses of preparation effects in task-switching, our results argue against purely passive structural processing limitations in multitasking. Based on these findings and drawing on current theorizing, we present a neuro-cognitive processing model of multitasking.

[1]  Christopher L. Asplund,et al.  Isolation of a Central Bottleneck of Information Processing with Time-Resolved fMRI , 2006, Neuron.

[2]  Paul D. Kieffaber,et al.  Event-related potential correlates of task switching and switch costs. , 2005, Psychophysiology.

[3]  M. Chun,et al.  Response-specific sources of dual-task interference in human pre-motor cortex , 2006, Psychological research.

[4]  E. Crone,et al.  Neural evidence for dissociable components of task-switching. , 2006, Cerebral cortex.

[5]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[6]  A. Aron,et al.  Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex , 2010, Proceedings of the National Academy of Sciences.

[7]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[8]  Dr. Stefan Geyer The Microstructural Border Between the Motor and the Cognitive Domain in the Human Cerebral Cortex , 2004, Advances in Anatomy Embryology and Cell Biology.

[9]  Torsten Schubert,et al.  Dissociable Neural Effects of Task Order Control and Task Set Maintenance during Dual-task Processing , 2008, Journal of Cognitive Neuroscience.

[10]  Ehud Zohary,et al.  Parietal mapping of visuomotor transformations during human tool grasping. , 2008, Cerebral cortex.

[11]  S. Eickhoff,et al.  Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. , 2013, Psychological bulletin.

[12]  K. Amunts,et al.  Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study. , 2001, Cerebral cortex.

[13]  Kenneth F. Valyear,et al.  Dissociating Arbitrary Stimulus-Response Mapping from Movement Planning during Preparatory Period: Evidence from Event-Related Functional Magnetic Resonance Imaging , 2006, The Journal of Neuroscience.

[14]  Roberto Cabeza,et al.  Adult Age Differences in Functional Connectivity during Executive Control Nih Public Access Materials and Methods Cue-related Activation Functional Connectivity of Switch-related Activation on Cue-only Trials , 2022 .

[15]  N. Meiran Modeling cognitive control in task-switching , 2000, Psychological research.

[16]  Christina B Reimer,et al.  The impact of free-order and sequential-order instructions on task-order regulation in dual tasks , 2018, Psychological research.

[17]  G. Logan,et al.  Clever homunculus: is there an endogenous act of control in the explicit task-cuing procedure? , 2003, Journal of experimental psychology. Human perception and performance.

[18]  S. Eickhoff,et al.  Interindividual differences in cognitive flexibility: influence of gray matter volume, functional connectivity and trait impulsivity , 2014, Brain Structure and Function.

[19]  Susan M. Ravizza,et al.  Shifting set about task switching: Behavioral and neural evidence for distinct forms of cognitive flexibility , 2008, Neuropsychologia.

[20]  John J. Foxe,et al.  Jumping the gun: is effective preparation contingent upon anticipatory activation in task-relevant neural circuitry? , 2006, Cerebral cortex.

[21]  D. Meyer,et al.  Executive control of cognitive processes in task switching. , 2001, Journal of experimental psychology. Human perception and performance.

[22]  A. Allport,et al.  Task switching and the measurement of “switch costs” , 2000, Psychological research.

[23]  Hermann J. Müller,et al.  The neural implementation of task rule activation in the task-cuing paradigm: An event-related fMRI study , 2010, NeuroImage.

[24]  M. Petrides Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain , 1997, Neuropsychologia.

[25]  T Shallice,et al.  Impaired concentration due to frontal lobe damage from two distinct lesion sites , 2005, Neurology.

[26]  K. Zilles,et al.  A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis , 2010, Brain Structure and Function.

[27]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[28]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[29]  D. V. von Cramon,et al.  Localization of Executive Functions in Dual-Task Performance with fMRI , 2002, Journal of Cognitive Neuroscience.

[30]  R. D. Gordon,et al.  Executive control of visual attention in dual-task situations. , 2001, Psychological review.

[31]  John D. E. Gabrieli,et al.  Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control , 2010, NeuroImage.

[32]  I. Koch,et al.  The role of response selection for inhibition of task sets in task shifting. , 2003, Journal of experimental psychology. Human perception and performance.

[33]  S. Eickhoff,et al.  Towards a human self-regulation system: Common and distinct neural signatures of emotional and behavioural control , 2018, Neuroscience & Biobehavioral Reviews.

[34]  Tomás Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye ®eld Facilitates Visual Awareness , 2022 .

[35]  A. Turken,et al.  Left inferior frontal gyrus is critical for response inhibition , 2008, BMC Neuroscience.

[36]  Jochen Braun,et al.  Cortical Response to Task-relevant Stimuli Presented outside the Primary Focus of Attention , 2010, Journal of Cognitive Neuroscience.

[37]  S. Eickhoff,et al.  Neuroscience and Biobehavioral Reviews Three Key Regions for Supervisory Attentional Control: Evidence from Neuroimaging Meta-analyses , 2022 .

[38]  M. Rushworth,et al.  Attention Systems and the Organization of the Human Parietal Cortex , 2001, The Journal of Neuroscience.

[39]  S. Yantis,et al.  Control of Attention Shifts between Vision and Audition in Human Cortex , 2004, The Journal of Neuroscience.

[40]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[41]  R. Andersen,et al.  Evidence for the lateral intraparietal area as the parietal eye field , 1992, Current Opinion in Neurobiology.

[42]  Ethan R. Buch,et al.  Distributed and causal influence of frontal operculum in task control , 2011, Proceedings of the National Academy of Sciences.

[43]  Angela R. Laird,et al.  Modelling neural correlates of working memory: A coordinate-based meta-analysis , 2012, NeuroImage.

[44]  Marcel Brass,et al.  The implementation of verbal instructions: Dissociating motor preparation from the formation of stimulus–response associations , 2012, NeuroImage.

[45]  Scott T. Grafton The cognitive neuroscience of prehension: recent developments , 2010, Experimental Brain Research.

[46]  F. Karayanidis,et al.  The many faces of preparatory control in task switching: Reviewing a decade of fMRI research , 2013, Human brain mapping.

[47]  Simon B Eickhoff,et al.  Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses , 2012, Human brain mapping.

[48]  Dirk H. K. Schmidt,et al.  Interindividual Differences in Mid-Adolescents in Error Monitoring and Post-Error Adjustment , 2014, PloS one.

[49]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[50]  Timothy Edward John Behrens,et al.  Response-Selection-Related Parietal Activation during Number Comparison , 2004, Journal of Cognitive Neuroscience.

[51]  P. Jolicoeur,et al.  Central processing overlap modulates P3 latency , 2005, Experimental Brain Research.

[52]  P. Fox,et al.  The role of anterior midcingulate cortex in cognitive motor control , 2014, Human brain mapping.

[53]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[54]  J. Tanji,et al.  Transformation of a Virtual Action Plan into a Motor Plan in the Premotor Cortex , 2008, The Journal of Neuroscience.

[55]  M. Brass,et al.  The implementation of verbal instructions: An fMRI study , 2011, Human brain mapping.

[56]  Céline R. Gillebert,et al.  Parcellation of parietal cortex: Convergence between lesion-symptom mapping and mapping of the intact functioning brain , 2009, Behavioural Brain Research.

[57]  Simon B. Eickhoff,et al.  Meta-analytical definition and functional connectivity of the human vestibular cortex , 2012, NeuroImage.

[58]  P. Jolicoeur,et al.  A central capacity sharing model of dual-task performance. , 2003, Journal of experimental psychology. Human perception and performance.

[59]  M. Sigman,et al.  Brain Mechanisms of Serial and Parallel Processing during Dual-Task Performance , 2008, The Journal of Neuroscience.

[60]  D E Kieras,et al.  A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. , 1997, Psychological review.

[61]  Simon B Eickhoff,et al.  Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task. , 2010, Journal of neurophysiology.

[62]  Hiroki M. Morimoto,et al.  Functional dissociation in right inferior frontal cortex during performance of go/no-go task. , 2009, Cerebral cortex.

[63]  N. Cohen,et al.  General and task-specific frontal lobe recruitment in older adults during executive processes: A fMRI investigation of task-switching , 2001, Neuroreport.

[64]  Andrea M Philipp,et al.  The role of inhibition in task switching: A review , 2010, Psychonomic bulletin & review.

[65]  Torsten Schubert,et al.  Aging and input processing in dual-task situations. , 2004, Psychology and aging.

[66]  David E. Meyer,et al.  Executive control of cognitive processes in task switching. , 2001 .

[67]  Maurizio Corbetta,et al.  Anatomical Segregation of Visual Selection Mechanisms in Human Parietal Cortex , 2013, The Journal of Neuroscience.

[68]  A. Dove,et al.  Prefrontal cortex activation in task switching: an event-related fMRI study. , 2000, Brain research. Cognitive brain research.

[69]  Suzanne T. Witt,et al.  fMRI task parameters influence hemodynamic activity in regions implicated in mental set switching , 2013, NeuroImage.

[70]  M. D’Esposito,et al.  Neural Evidence for Representation-Specific Response Selection , 2003, Journal of Cognitive Neuroscience.

[71]  S. Yantis,et al.  A Domain-Independent Source of Cognitive Control for Task Sets: Shifting Spatial Attention and Switching Categorization Rules , 2009, The Journal of Neuroscience.

[72]  Gregory V. Simpson,et al.  Evidence for Anterior Cingulate Cortex Involvement in Monitoring Preparatory Attentional Set , 2002, NeuroImage.

[73]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[74]  David Badre,et al.  Computational and neurobiological mechanisms underlying cognitive flexibility. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Andrea M Philipp,et al.  Differential roles of inferior frontal and inferior parietal cortex in task switching: Evidence from stimulus‐categorization switching and response‐modality switching , 2013, Human brain mapping.

[76]  B. Gold,et al.  Domain general and domain preferential brain regions associated with different types of task switching: A Meta‐Analysis , 2012, Human brain mapping.

[77]  S. Monsell,et al.  Costs of a predictible switch between simple cognitive tasks. , 1995 .

[78]  K. Zilles,et al.  Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty , 2009, Human brain mapping.

[79]  N. Sadato,et al.  Role of the Supplementary Motor Area and the Right Premotor Cortex in the Coordination of Bimanual Finger Movements , 1997, The Journal of Neuroscience.

[80]  Michael J. Martinez,et al.  Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template , 2007, Human brain mapping.

[81]  J. Cerella,et al.  Aging and dual-task performance: a meta-analysis. , 2003, Psychology and aging.

[82]  M. D’Esposito,et al.  The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study , 2006, Psychological research.

[83]  Cameron S Carter,et al.  Cognitive control involved in overcoming prepotent response tendencies and switching between tasks. , 2005, Cerebral cortex.

[84]  Y. Rossetti,et al.  A hand and a field effect in on-line motor control in unilateral optic ataxia , 2008, Cortex.

[85]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[86]  Patrik Vuilleumier,et al.  Neural substrates of cognitive switching and inhibition in a face processing task , 2010, NeuroImage.

[87]  M. Rushworth,et al.  The left parietal and premotor cortices: motor attention and selection , 2003, NeuroImage.

[88]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[89]  Stefan Pollmann,et al.  Event‐related fMRI: Comparison of conditions with varying BOLD overlap , 2000, Human brain mapping.

[90]  T. Braver,et al.  Anticipating the consequences of action: an fMRI study of intention-based task preparation. , 2010, Psychophysiology.

[91]  J. Mattingley,et al.  Fast and slow parietal pathways mediate spatial attention , 2004, Nature Neuroscience.

[92]  M. Sigman,et al.  Dynamics of the Central Bottleneck: Dual-Task and Task Uncertainty , 2006, PLoS biology.

[93]  Louise Emsell,et al.  The functional neuroanatomy of multitasking: Combining dual tasking with a short term memory task , 2013, Neuropsychologia.

[94]  Bahador Bahrami,et al.  A Candidate for the Attentional Bottleneck: Set-size Specific Modulation of the Right TPJ during Attentive Enumeration , 2011, Journal of Cognitive Neuroscience.

[95]  Christopher L. Asplund,et al.  A Unified attentional bottleneck in the human brain , 2011, Proceedings of the National Academy of Sciences.

[96]  D. Alan Allport,et al.  SHIFTING INTENTIONAL SET - EXPLORING THE DYNAMIC CONTROL OF TASKS , 1994 .

[97]  M. Hughes,et al.  The spatial and temporal dynamics of anticipatory preparation and response inhibition in task-switching , 2010, NeuroImage.

[98]  C. Liston,et al.  Anterior Cingulate and Posterior Parietal Cortices Are Sensitive to Dissociable Forms of Conflict in a Task-Switching Paradigm , 2006, Neuron.

[99]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[100]  T. Paus Primate anterior cingulate cortex: Where motor control, drive and cognition interface , 2001, Nature Reviews Neuroscience.

[101]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[102]  A. Allport,et al.  Cue-based preparation and stimulus-based priming of tasks in task switching , 2006, Memory & cognition.

[103]  R. Marois,et al.  Capacity limits of information processing in the brain , 2005, Trends in Cognitive Sciences.

[104]  Dorothee P. Auer,et al.  Neural networks of response shifting: Influence of task speed and stimulus material , 2006, Brain Research.

[105]  M. Rushworth,et al.  TMS in the parietal cortex: Updating representations for attention and action , 2006, Neuropsychologia.

[106]  J. Jolles,et al.  Differential brain activation patterns in adult attention-deficit hyperactivity disorder (ADHD) associated with task switching. , 2010, Neuropsychology.

[107]  Jonathan D. Cohen,et al.  Between-Task Competition and Cognitive Control in Task Switching , 2006, The Journal of Neuroscience.

[108]  H. Pashler Dual-task interference in simple tasks: data and theory. , 1994, Psychological bulletin.

[109]  V. Calhoun,et al.  Functional neural circuits for mental timekeeping , 2007, Human brain mapping.

[110]  Angela R. Laird,et al.  Activation likelihood estimation meta-analysis revisited , 2012, NeuroImage.

[111]  John Jonides,et al.  Dual-task processing in younger and older adults: Similarities and differences revealed by fMRI , 2011, Brain and Cognition.

[112]  R. Kliegl,et al.  Time-Accuracy Functions for Determining Process and Person Differences: An Application To Cognitive Aging , 1994, Cognitive Psychology.

[113]  M. Brass,et al.  A Review of the Role of Cue Processing in Task Switching , 2013 .

[114]  Natalie A. Phillips,et al.  Behavioural and electrophysiological measures of task switching during single and mixed-task conditions , 2006, Biological Psychology.

[115]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[116]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[117]  D. V. Cramon,et al.  Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies , 2003, NeuroImage.

[118]  Angela R. Laird,et al.  Tackling the multifunctional nature of Broca's region meta-analytically: Co-activation-based parcellation of area 44 , 2013, NeuroImage.

[119]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[120]  Tor D Wager,et al.  Neuroimaging studies of shifting attention: a meta-analysis , 2004, NeuroImage.

[121]  Jonas Persson,et al.  Mapping interference resolution across task domains: A shared control process in left inferior frontal gyrus , 2009, Brain Research.

[122]  Stefan Geyer,et al.  Prologue: Toward the Concept of a Cortical Control of Voluntary Movements , 2004 .

[123]  Andrea Kiesel,et al.  Cognitive Structure, Flexibility, and Plasticity in Human Multitasking—An Integrative Review of Dual-Task and Task-Switching Research , 2018, Psychological bulletin.

[124]  G. D. Logan Task Switching , 2022 .

[125]  M. Brammer,et al.  Neural correlates of switching set as measured in fast, event‐related functional magnetic resonance imaging , 2004, Human brain mapping.

[126]  T. Shallice,et al.  Multiple frontal systems controlling response speed , 2005, Neuropsychologia.

[127]  E. Koechlin,et al.  Broca's Area and the Hierarchical Organization of Human Behavior , 2006, Neuron.

[128]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[129]  N. Kanwisher,et al.  Functional Magnetic Resonance Imaging Provides New Constraints on Theories of the Psychological Refractory Period , 2004, Psychological science.

[130]  Jeremy R. Reynolds,et al.  Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching , 2003, Neuron.

[131]  F. Binkofski,et al.  Parietal modules for reaching , 2009, Neuropsychologia.

[132]  Yuhong Jiang,et al.  Resolving dual-task interference: an fMRI study , 2004, NeuroImage.

[133]  Roy Luria,et al.  Online order control in the psychological refractory period paradigm. , 2003, Journal of experimental psychology. Human perception and performance.

[134]  Peter Falkai,et al.  Neural mechanisms of advance preparation in task switching , 2006, NeuroImage.

[135]  Adam R. Walczak,et al.  At the heart of the ventral attention system: The right anterior insula , 2009, Human brain mapping.

[136]  Y. Stern,et al.  Age differences of multivariate network expressions during task-switching and their associations with behavior , 2012, Neuropsychologia.

[137]  David E. Kieras,et al.  A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. , 1997 .

[138]  R. Dolan,et al.  Switching between the Forest and the Trees: Brain Systems Involved in Local/Global Changed-Level Judgments , 2001, NeuroImage.

[139]  Jonathan D. Cohen,et al.  Conflict monitoring and anterior cingulate cortex: an update , 2004, Trends in Cognitive Sciences.

[140]  Sabine Kastner,et al.  Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex , 2011, NeuroImage.

[141]  C. Kennard,et al.  Functional role of the supplementary and pre-supplementary motor areas , 2008, Nature Reviews Neuroscience.

[142]  D. Navon,et al.  Queuing or Sharing? A Critical Evaluation of the Single-Bottleneck Notion , 2002, Cognitive Psychology.

[143]  Shin Ishii,et al.  Hierarchical Rule Switching in Prefrontal Cortex , 2022 .

[144]  A. Welford THE ‘PSYCHOLOGICAL REFRACTORY PERIOD’ AND THE TIMING OF HIGH‐SPEED PERFORMANCE—A REVIEW AND A THEORY , 1952 .

[145]  M. Sliwinski,et al.  Aging and task switching: a meta-analysis. , 2011, Psychology and aging.

[146]  Guillaume Flandin,et al.  Probing the cortical network underlying the psychological refractory period: A combined EEG–fMRI study , 2011, NeuroImage.

[147]  J. Gyoba,et al.  Brain activity associated with dual-task management differs depending on the combinations of response modalities , 2007, Brain Research.

[148]  Simon B. Eickhoff,et al.  Aging and response conflict solution: behavioural and functional connectivity changes , 2014, Brain Structure and Function.

[149]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[150]  M. Brass,et al.  Advance preparation and stimulus-induced interference in cued task switching: further insights from BOLD fMRI , 2005, Neuropsychologia.

[151]  Phan Luu,et al.  Dynamics of task sets: evidence from dense-array event-related potentials. , 2005, Brain research. Cognitive brain research.

[152]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[153]  K. Berman,et al.  Meta‐analysis of neuroimaging studies of the Wisconsin Card‐Sorting task and component processes , 2005, Human brain mapping.

[154]  R Kliegl,et al.  Sequential and coordinative complexity: age-based processing limitations in figural transformations. , 1993, Journal of experimental psychology. Learning, memory, and cognition.

[155]  U. Castiello,et al.  Cortical Activations in Humans Grasp-Related Areas Depend on Hand Used and Handedness , 2008, PloS one.

[156]  Jan Derrfuss,et al.  Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory , 2004, NeuroImage.

[157]  Kimberly L. Ray,et al.  Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions , 2012, Cognitive, affective & behavioral neuroscience.

[158]  Thomas E. Nichols,et al.  Toward a taxonomy of attention shifting: Individual differences in fMRI during multiple shift types , 2005, Cognitive, affective & behavioral neuroscience.

[159]  F. Karayanidis,et al.  Compensatory mechanisms underlie intact task-switching performance in schizophrenia , 2010, Neuropsychologia.

[160]  O. Hikosaka,et al.  Switching from automatic to controlled action by monkey medial frontal cortex , 2007, Nature Neuroscience.

[161]  M. Ullsperger,et al.  Neurophysiology of performance monitoring and adaptive behavior. , 2014, Physiological reviews.

[162]  T. Braver,et al.  Attention, intention, and strategy in preparatory control , 2009, Neuropsychologia.

[163]  A. Chatterjee,et al.  Staying responsive to the world: Modality‐specific and ‐nonspecific contributions to speeded auditory, tactile, and visual stimulus detection , 2012, Human brain mapping.

[164]  Torsten Schubert,et al.  Dissociable Networks Control Conflict during Perception and Response Selection: A Transcranial Magnetic Stimulation Study , 2013, The Journal of Neuroscience.

[165]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[166]  Eduardo Serrano,et al.  Characterization of a clinical olfactory test with an artificial nose , 2011, Front. Neuroeng..

[167]  R. Kliegl,et al.  Sequential and coordinative processing dynamics in figural transformations across the life span , 1996, Cognition.

[168]  E. Fombonne,et al.  Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls. , 2009, Journal of child psychology and psychiatry, and allied disciplines.

[169]  Brian Caffo,et al.  Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control , 2013, Journal of Cognitive Neuroscience.

[170]  N. Meiran,et al.  Component Processes in Task Switching , 2000, Cognitive Psychology.

[171]  Tianzi Jiang,et al.  The Right Dorsal Premotor Mosaic: Organization, Functions, and Connectivity , 2016, Cerebral cortex.

[172]  Iring Koch,et al.  Common Cognitive Control Processes Underlying Performance in Task-Switching and Dual-Task Contexts , 2018, Advances in cognitive psychology.

[173]  Walter Schneider,et al.  The cognitive control network: Integrated cortical regions with dissociable functions , 2007, NeuroImage.

[174]  K. A. Hadland,et al.  Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. , 2002, Journal of neurophysiology.

[175]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[176]  Maurizio Corbetta,et al.  Distinct representations for shifts of spatial attention and changes of reward contingencies in the human brain , 2013, Cortex.

[177]  J. Kwon,et al.  Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. , 2007, Brain : a journal of neurology.

[178]  J. Grafman,et al.  Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. , 2003, Cerebral cortex.

[179]  E. Koechlin,et al.  The role of the anterior prefrontal cortex in human cognition , 1999, Nature.

[180]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[181]  Richard B. Ivry,et al.  Task switching and multitask performance. , 2000 .

[182]  Andrea M Philipp,et al.  Control and interference in task switching--a review. , 2010, Psychological bulletin.

[183]  S. Monsell Task switching , 2003, Trends in Cognitive Sciences.

[184]  Torsten Schubert,et al.  Task-order coordination in dual-task performance and the lateral prefrontal cortex: an event-related fMRI study , 2006, Psychological research.

[185]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[186]  Jessica J. Green,et al.  Electrical Neuroimaging Reveals Timing of Attentional Control Activity in Human Brain , 2008, PLoS Biology.

[187]  M. Brass,et al.  Involvement of the inferior frontal junction in cognitive control: Meta‐analyses of switching and Stroop studies , 2005, Human brain mapping.

[188]  M. Corbetta,et al.  Interaction of Stimulus-Driven Reorienting and Expectation in Ventral and Dorsal Frontoparietal and Basal Ganglia-Cortical Networks , 2009, The Journal of Neuroscience.

[189]  M. Coltheart,et al.  Electrophysiological correlates of anticipatory and poststimulus components of task switching. , 2003, Psychophysiology.

[190]  Angela R. Laird,et al.  Is There “One” DLPFC in Cognitive Action Control? Evidence for Heterogeneity From Co-Activation-Based Parcellation , 2012, Cerebral cortex.

[191]  Paul Cisek,et al.  Dorsal premotor cortex is involved in switching motor plans , 2012, Front. Neuroeng..

[192]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[193]  D. Kahneman,et al.  Attention and Effort , 1973 .

[194]  Jun Tanji,et al.  Integration of target and body-part information in the premotor cortex when planning action , 2000, Nature.

[195]  I. Koch,et al.  Higher-Order Cognitive Control in Dual Tasks: Evidence From Task-Pair Switching , 2017, Journal of experimental psychology. Human perception and performance.

[196]  E. Koechlin,et al.  Motivation and cognitive control in the human prefrontal cortex , 2009, Nature Neuroscience.

[197]  Chris Oliver,et al.  Neural correlates of task switching in paternal 15q11–q13 deletion Prader–Willi syndrome , 2010, Brain Research.

[198]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[199]  C. Summerfield,et al.  Two Mechanisms for Task Switching in the Prefrontal Cortex , 2009, The Journal of Neuroscience.

[200]  Torsten Schubert,et al.  Processing differences between simple and choice reactions affect bottleneck localization in overlapping tasks , 1999 .

[201]  M. D’Esposito,et al.  Modulation of task-related neural activity in task-switching: an fMRI study. , 2000, Brain research. Cognitive brain research.

[202]  T. Kellermann,et al.  Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. , 2011, Cerebral cortex.

[203]  John R. Anderson,et al.  The role of prefrontal cortex and posterior parietal cortex in task switching. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[204]  Andrew Heathcote,et al.  Electrophysiological correlates of anticipatory task-switching processes. , 2005, Psychophysiology.

[205]  H. Siebner,et al.  Joint Contribution of Left Dorsal Premotor Cortex and Supramarginal Gyrus to Rapid Action Reprogramming , 2015, Brain Stimulation.

[206]  T. Braver,et al.  Motivated Cognitive Control: Reward Incentives Modulate Preparatory Neural Activity during Task-Switching , 2010, The Journal of Neuroscience.

[207]  M. Brass,et al.  Decomposing Components of Task Preparation with Functional Magnetic Resonance Imaging , 2004, Journal of Cognitive Neuroscience.

[208]  Stewart H. Mostofsky,et al.  Response Inhibition and Response Selection: Two Sides of the Same Coin , 2008, Journal of Cognitive Neuroscience.

[209]  Marcel Brass,et al.  Cue-switch effects do not rely on the same neural systems as task-switch effects , 2011, Cognitive, affective & behavioral neuroscience.

[210]  Suzanne T. Witt,et al.  Overcoming residual interference in mental set switching: Neural correlates and developmental trajectory , 2012, NeuroImage.

[211]  Simon B. Eickhoff,et al.  A quantitative meta-analysis and review of motor learning in the human brain , 2013, NeuroImage.

[212]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[213]  Michael C. Anderson,et al.  Prefrontal–hippocampal pathways underlying inhibitory control over memory , 2016, Neurobiology of Learning and Memory.

[214]  Arthur F. Kramer,et al.  Neural correlates of dual-task performance after minimizing task-preparation , 2005, NeuroImage.

[215]  Eliot Hazeltine,et al.  Dissociable Contributions of Prefrontal and Parietal Cortices to Response Selection , 2002, NeuroImage.

[216]  Torsten Schubert,et al.  Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. , 2003, Brain research. Cognitive brain research.

[217]  R. Ptak The Frontoparietal Attention Network of the Human Brain , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[218]  M. Brass,et al.  The role of the frontal cortex in task preparation. , 2002, Cerebral cortex.