Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability

The evaluation of reaction energies between solids using density functional theory (DFT) is of practical importance in many technological fields and paramount in the study of the phase stability of known and predicted compounds. In this work, we present a comparison between reaction energies provided by experiments and computed by DFT in the generalized gradient approximation (GGA), using a Hubbard U parameter for some transitionmetalelements(GGA +U).Weuseadatasetof135reactionsinvolvingtheformationofternaryoxides from binary oxides in a broad range of chemistries and crystal structures. We find that the computational errors can be modeled by a normal distribution with a mean close to zero and a standard deviation of 24 meV/atom. The significantly smaller error compared to the more commonly reported errors in the formation energies from the elements is related to the larger cancellation of errors in energies when reactions involve chemically similar compounds. This result is of importance for phase diagram computations for which the relevant reaction energies are often not from the elements but from chemically close phases (e.g., ternary oxides versus binary oxides). In addition, we discuss the distribution of computational errors among chemistries and show that the use of a Hubbard U parameter is critical to the accuracy of reaction energies involving transition metals even when no major change in formal oxidation state is occurring.

[1]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[2]  Shyue Ping Ong,et al.  First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery , 2011, Physical Review B.

[3]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[4]  Anubhav Jain,et al.  Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing , 2011 .

[5]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[6]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[7]  Shun-Li Shang,et al.  First-principles study of lattice dynamics and thermodynamics of TiO2 polymorphs. , 2011, Inorganic chemistry.

[8]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[9]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[10]  R. Hennig,et al.  Computationally driven experimental discovery of the CeIr4In compound , 2011, 1103.2259.

[11]  Anubhav Jain,et al.  Synthesis and Electrochemical Properties of Monoclinic LiMnBO3 as a Li Intercalation Material , 2011 .

[12]  Anubhav Jain,et al.  Recharging lithium battery research with first-principles methods , 2011 .

[13]  B. Zhang,et al.  CO2 capture properties of M―C―O―H (M=Li, Na, K) systems: A combined density functional theory and lattice phonon dynamics study , 2011 .

[14]  R. Ahuja,et al.  Relativity and the lead-acid battery. , 2010, Physical review letters.

[15]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[16]  Alex Zunger,et al.  Structure prediction and targeted synthesis: a new Na(n)N2 diazenide crystalline structure. , 2010, Journal of Chemical Physics.

[17]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[18]  J. Rossmeisl,et al.  Trends in stability of perovskite oxides. , 2010, Angewandte Chemie.

[19]  Y. Duan,et al.  CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study. , 2010, The Journal of chemical physics.

[20]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[21]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[22]  Anubhav Jain,et al.  Ab initio screening of metal sorbents for elemental mercury capture in syngas streams , 2010 .

[23]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[24]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[25]  Stefano Curtarolo,et al.  The new face of rhodium alloys: revealing ordered structures from first principles. , 2010, Journal of the American Chemical Society.

[26]  B. Meredig,et al.  First-principles thermodynamic framework for the evaluation of thermochemical H 2 O - or CO 2 -splitting materials , 2009 .

[27]  R. Armiento,et al.  Implementing and testing the AM05 spin density functional , 2009 .

[28]  G. Hautier,et al.  First Principles Study of the Li-Bi-F Phase Diagram and Bismuth Fluoride Conversion Reactions with Lithium , 2009 .

[29]  V. Ozoliņš,et al.  First-Principles Determination of Crystal Structures, Phase Stability, and Reaction Thermodynamics in the Li-Mg-Al-H Hydrogen Storage System , 2009 .

[30]  Kristin A. Persson,et al.  First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium , 2008 .

[31]  Stefano Curtarolo,et al.  Thermodynamic stabilities of ternary metal borides: An ab initio guide for synthesizing layered superconductors , 2008, 0806.0061.

[32]  Gus L. W. Hart,et al.  Generating derivative structures: Algorithm and applications , 2008, 0804.3544.

[33]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[34]  Richard G. Hennig,et al.  Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys , 2008, Nature.

[35]  Stephan Lany,et al.  Semiconductor Thermochemistry in Density Functional Calculations , 2008 .

[36]  Georg Kresse,et al.  Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations , 2007 .

[37]  David S Sholl,et al.  Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. , 2007, Physical chemistry chemical physics : PCCP.

[38]  Gerbrand Ceder,et al.  A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials , 2007 .

[39]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[40]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[41]  S. Stølen,et al.  What can a "quantum black-box" do for the inorganic thermochemist? , 2006, Physical chemistry chemical physics : PCCP.

[42]  R. Armiento,et al.  Functional designed to include surface effects in self-consistent density functional theory , 2005 .

[43]  A. Kuwabara,et al.  Cubic and orthorhombic structures off aluminum hydride AlH3 predicted by a first-principles study , 2005 .

[44]  R. Dronskowski,et al.  Predicting new ferromagnetic nitrides from electronic structure theory: IrFe3N and RhFe3N. , 2005, Angewandte Chemie.

[45]  L. Öhman,et al.  Chemical thermodynamics of selenium , 2005 .

[46]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[47]  J. Nørskov,et al.  Combined electronic structure and evolutionary search approach to materials design. , 2002, Physical review letters.

[48]  Börje Johansson,et al.  Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles - art. no. 115108 , 2001 .

[49]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[50]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[51]  S. Dash,et al.  Enthalpy increment measurements of SrMoO4(s) and BaMoO4(s) , 1998 .

[52]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[53]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[54]  T. Mathews,et al.  An electrochemical investigation of the thermodynamic properties of Na2Mo2O7 and Na2NiO3 , 1997 .

[55]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[56]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[57]  F. Grønvold,et al.  Heat capacity and thermodynamic properties of nearly stoichiometric wüstite from 13 to 450 K , 1996 .

[58]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[59]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[60]  Scott R. Eliason Maximum likelihood estimation: Logic and practice. , 1994 .

[61]  D. Sood,et al.  The standard molar enthalpies of formation at the temperature T = 298.15 K of barium molybdate BaMoO4(cr) and strontium molybdate SrMoO4(cr) , 1993 .

[62]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[63]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[64]  D. Pettifor Structure maps in alloy design , 1990 .

[65]  C. Johnson,et al.  Thermodynamic review and calculations—alkali-metal oxide systems with nuclear fuels, fission products, and structural materials , 1981 .

[66]  I. D. Brown,et al.  INORGANIC CRYSTAL STRUCTURE DATABASE , 1981 .

[67]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[68]  Y. Tardy,et al.  Relationships among Gibbs free energies and enthalpies of formation of phosphates, oxides and aqueous ions , 1977 .

[69]  P. O'hare Thermochemistry of molybdates III. Standard enthalpy of formation of barium molybdate, and the standard entropy and standard Gibbs energy of formation of the aqueous molybdate ion , 1974 .

[70]  D. W. Osborne,et al.  The heat capacity of dicesium monoxide (Cs2O) from 5 to 350 K and the Gibbs energy of formation to 763 K , 1974 .

[71]  B. G. King Heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals , 1956 .

[72]  K. Pearson Biometrika , 1902, The American Naturalist.