Image Retrieval using Harris Corners and Histogram of Oriented Gradients

based image retrieval is the technique to retrieve similar images from a database that are visually similar to a given query image. It is an active and emerging research field in computer vision. In our proposed system, the Interest points based Histogram of Oriented Gradients (HOG) feature descriptor is used to retrieve the relevant images from the database. The dimensionality of the HOG feature vector is reduced by Principle Component analysis (PCA). To improve the retrieval accuracy of the system the Colour Moments along with HOG feature descriptor are used in this system. The Interest points are detected using the Harris-corner detector in order to extract the image features. The KD-tree is used for matching and indexing the features of the query image with the database images.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hans Burkhardt,et al.  Fundamentals and Applications of Image Retrieval: An Overview , 2006, Datenbank-Spektrum.

[4]  Jean-Michel Jolion,et al.  Content based image retrieval using interest points and texture features , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[5]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Cordelia Schmid,et al.  Indexing Based on Scale Invariant Interest Points , 2001, ICCV.

[7]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[8]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[9]  Luc Van Gool,et al.  Content-Based Image Retrieval Based on Local Affinely Invariant Regions , 1999, VISUAL.

[10]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[11]  Shih-Fu Chang,et al.  Single color extraction and image query , 1995, Proceedings., International Conference on Image Processing.

[12]  Ramesh Jain,et al.  Storage and Retrieval for Image and Video Databases III , 1995 .

[13]  Shi Gang,et al.  Application of Image SIFT Features to the Context of CBIR , 2008, 2008 International Conference on Computer Science and Software Engineering.

[14]  John P. Oakley,et al.  Storage and Retrieval for Image and Video Databases , 1993 .

[15]  Zhongfei Zhang,et al.  FAST: Toward more effective and efficient image retrieval , 2005, Multimedia Systems.

[16]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[17]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[18]  Rainer Lienhart,et al.  Image retrieval on large-scale image databases , 2007, CIVR '07.

[19]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[20]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[23]  Pham The Bao,et al.  A New CBIR System Using SIFT Combined with Neural Network and Graph-Based Segmentation , 2010, ACIIDS.

[24]  Hui Zhang,et al.  Local image representations using pruned salient points with applications to CBIR , 2006, MM '06.

[25]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[26]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[27]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[28]  Remco C. Veltkamp,et al.  Content-based image retrieval systems: A survey , 2000 .

[29]  Yan Ke,et al.  Efficient Near-duplicate Detection and Sub-image Retrieval , 2004 .