Inhibition of 3H-quinuclidinyl benzylate binding to cardiac muscarinic receptor by long chain fatty acids can be attenuated by ligand occupation of the receptor.

[1]  A. Katz,et al.  Effect of exogenous phospholipase A2 treatment on cardiac muscarinic receptors of highly purified canine sarcolemmal vesicles. , 1987, Journal of molecular and cellular cardiology.

[2]  Y. Barenholz,et al.  Role of lipids in age-related changes in the properties of muscarinic receptors in cultured rat heart myocytes. , 1986, Biochemistry.

[3]  M. Mishina,et al.  Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor , 1986, Nature.

[4]  A. Katz,et al.  Aliphatic chain saturation and polar region influence amphiphile effects on sarcoplasmic reticulum calcium sequestration. , 1986, Life sciences.

[5]  L. Herbette,et al.  Structure-function studies of canine cardiac sarcolemmal membranes. I. Estimation of receptor site densities. , 1985, Biochimica et biophysica acta.

[6]  R. Gross,et al.  Modulation of Canine Myocardial Sarcolemmal Membrane Fluidity by Amphiphilic Compounds , 1984, Circulation research.

[7]  Y. Kloog,et al.  Fatty acid incorporation increases the affinity of muscarinic cholinergic receptors for agonists. , 1984, Biochimica et biophysica acta.

[8]  P. Corr,et al.  Amphipathic metabolites and membrane dysfunction in ischemic myocardium. , 1984, Circulation research.

[9]  T. Ozawa,et al.  The role of phospholipase in mitochondrial dysfunction after coronary reperfusion in the canine myocardium. , 1984, Japanese circulation journal.

[10]  J. Watras,et al.  Mechanisms of fatty acid effects on sarcoplasmic reticulum. III. The effects of palmitic and oleic acids on sarcoplasmic reticulum function--a model for fatty acid membrane interactions. , 1984, The Journal of biological chemistry.

[11]  C. Clarkson,et al.  On the mechanism of lysophosphatidylcholine-induced depolarization of cat ventricular myocardium. , 1983, Circulation research.

[12]  A. Katz,et al.  Fatty acid effects on calcium influx and efflux in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. , 1982, Biochimica et biophysica acta.

[13]  F. Prinzen,et al.  Uptake and Tissue Content of Fatty Acids in Dog Myocardium under Normoxic and Ischemic Conditions , 1982, Circulation research.

[14]  N. Shaikh Time Course of Changes in Porcine Myocardial Phospholipid Levels during Ischemia: A Reassessment of the Lysolipid Hypothesis , 1981, Circulation research.

[15]  P. Corr,et al.  Electrophysiological Effects of Amphiphiles on Canine Purkinje Fibers , 1981, Circulation research.

[16]  G. Sawicki,et al.  The Effects of Lysophosphatidylcholine, a Toxic Metabolite of Ischemia, on the Components of Cardiac Excitability in Sheep , 1981, Circulation research.

[17]  K. Chien,et al.  Phospholipid Alterations in Canine Ischemic Myocardium: Temporal and Topographical Correlations with Tc‐99m‐PPi Accumulation and an in Vitro Sarcolemmal Ca2+ Permeability Defect , 1981, Circulation research.

[18]  L. Jones,et al.  Unmasking effect of alamethicin on the (Na+,K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles. , 1980, The Journal of biological chemistry.

[19]  M. McNamee,et al.  Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. , 1980, Biochemistry.

[20]  P. Corr,et al.  Augmentation of cyclic AMP content induced by lysophosphatidyl choline in rabbit hearts. , 1979, Cardiovascular research.

[21]  G. Karikas,et al.  The inhibition of Na+ and K+ stimulated ATPase activity of rabbit and dog heart sarcolemma by lysophosphatidyl choline. , 1979, Life sciences.

[22]  R. Aronstam,et al.  Role of phospholipids in muscarinic binding by neural membranes. , 1977, Biochemical pharmacology.

[23]  P. Isakson,et al.  Hormone selective lipase activation in the isolated rabbit heart. , 1977, Prostaglandins.

[24]  W. C. Hülsmann,et al.  Inhibition of (Na+ + K+)-stimulated ATPase of heart by fatty acids. , 1977, Journal of molecular and cellular cardiology.

[25]  M. Gottwik,et al.  Effect of collateral flow on epicardial and endocardial lysosomal hydrolases in acute myocardial ischemia. , 1975, The Journal of clinical investigation.

[26]  A. Martonosi,et al.  Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes. , 1971, Archives of biochemistry and biophysics.

[27]  B. Thomas,et al.  The effects of long chain fatty acids on sodium plus potassium ion-stimulated adenosine triphosphatase of rat brain. , 1971, The Journal of biological chemistry.

[28]  W. Fiehn,et al.  The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles. , 1970, European journal of biochemistry.

[29]  P. Mukerjee Dimerization of Anions of Long-Chain Fatty Acids in Aqueous Solutions and the Hydrophobic Properties of the Acids , 1965 .

[30]  T. Mansour,et al.  Factors influencing the stability of heart phosphofructokinase. , 1965, Molecular pharmacology.

[31]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[32]  R. Colvin Deinhibition of cardiac Na+-K+-ATPase after exposure to exogenous phospholipase A2. , 1987, The American journal of physiology.