Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation.

Molecular dynamics simulation was used to calculate rotational relaxation time, diffusion coefficient, and zero-shear viscosity for a pure aromatic compound (naphthalene) and for aromatic and aliphatic components in model asphalt systems over a temperature range of 298-443 K. The model asphalt systems were chosen previously to represent real asphalt. Green-Kubo and Einstein methods were used to estimate viscosity at high temperature (443.15 K). Rotational relaxation times were calculated by nonlinear regression of orientation correlation functions to a modified Kohlrausch-Williams-Watts function. The Vogel-Fulcher-Tammann equation was used to analyze the temperature dependences of relaxation time, viscosity, and diffusion coefficient. The temperature dependences of viscosity and relaxation time were related using the Debye-Stokes-Einstein equation, enabling viscosity at low temperatures of two model asphalt systems to be estimated from high temperature (443.15 K) viscosity and temperature-dependent relaxation time results. Semiquantitative accuracy of such an equivalent temperature dependence was found for naphthalene. Diffusion coefficient showed a much smaller temperature dependence for all components in the model asphalt systems. Dimethylnaphthalene diffused the fastest while asphaltene molecules diffused the slowest. Neat naphthalene diffused faster than any component in model asphalts.

[1]  G. Grest,et al.  Viscosity calculations of n-alkanes by equilibrium molecular dynamics , 1997 .

[2]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .

[3]  D. Bedrov,et al.  Temperature-dependent shear viscosity coefficient of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): A molecular dynamics simulation study , 2000 .

[4]  Influence of Simulation Details on Thermodynamic and Transport Properties in Molecular Dynamics of Fully Flexible Molecular Models , 2003 .

[5]  O. Mullins,et al.  Asphaltene Molecular Size and Structure , 1999 .

[6]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[7]  M. Nomura,et al.  Structure and Reactivity of Petroleum-Derived Asphaltene† , 1999 .

[8]  R. E. Wilde Correlation function modeling via the third‐order memory function: Application to ethane , 1979 .

[9]  H. D. Cochran,et al.  Molecular dynamics simulations of the rheology of normal decane, hexadecane, and tetracosane , 1996 .

[10]  Samuel Glasstone,et al.  The Theory Of Rate Processes , 1941 .

[11]  S. L. Malhotra,et al.  A study of the glass transition temperature of asphalts and their viscosity , 1978 .

[12]  S. DeCanio,et al.  Molecular representations of Ratawi and Alaska north slope asphaltenes based on liquid- and solid-state NMR : Resid upgrading , 1994 .

[13]  I. Wiehe,et al.  Asphaltenes, resins, and other petroleum macromolecules , 1996 .

[14]  Marcus G. Martin,et al.  Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities , 2006 .

[15]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[16]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[17]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[18]  J. Pablo,et al.  Segmental dynamics in a blend of alkanes: Nuclear magnetic resonance experiments and molecular dynamics simulation , 2002 .

[19]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[20]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[21]  P. Daivis,et al.  Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane , 1994 .

[22]  Prithvi S. Kandhal,et al.  Hot Mix Asphalt Materials, Mixture Design and Construction , 1996 .

[23]  M. Greenfield,et al.  Molecular Orientation in Model Asphalts Using Molecular Simulation , 2007 .

[24]  William L. Jorgensen,et al.  Development of an All-Atom Force Field for Heterocycles. Properties of Liquid Pyrrole, Furan, Diazoles, and Oxazoles , 1998 .

[25]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[26]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[27]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[28]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[29]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[30]  F. Kremer,et al.  Chain and local dynamics of polyisoprene as probed by experiments and computer simulations , 2003 .

[31]  Michael L. Greenfield,et al.  Analyzing properties of model asphalts using molecular simulation , 2007 .

[32]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[33]  R. Schwartz,et al.  A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids , 1981 .

[34]  S. DeCanio,et al.  Upper bound on number average molecular weight of asphaltenes , 1990 .

[35]  D. Theodorou,et al.  Stress tensor in model polymer systems with periodic boundaries , 1993 .

[36]  W. Mattice,et al.  Diffusion of liquid n-alkanes: Free-volume and density effects , 1998 .

[37]  S. T. C. P. T. C. H. D. Coch The calculation of viscosity of liquid n-decane and n-hexadecane by the Green-Kubo method , 1998 .

[38]  S. Dev,et al.  Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1971 .

[39]  Doros N. Theodorou,et al.  Geometric analysis of diffusion pathways in glassy and melt atactic polypropylene , 1993 .

[40]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[41]  Scott T. Milner,et al.  Dynamics of n-alkanes: Comparison to Rouse model , 1998 .

[42]  W. Steele,et al.  Isobaric and Isothermal Molecular Dynamics Simulations of Diatomic Systems , 1990 .

[43]  Michael L. Klein,et al.  Disorder in the pseudohexagonal rotator phase of n-alkanes: molecular-dynamics calculations for tricosane , 1989 .

[44]  Berend Smit,et al.  Accelerating Monte Carlo Sampling , 2002 .

[45]  P. Gordon Characterizing isoparaffin transport properties with Stokes-Einstein relationships , 2003 .

[46]  M. Marasteanu,et al.  High-Temperature Rheological Properties of Asphalt Binders , 2005 .

[47]  D. Salomon,et al.  Evaluation of Low-Temperature Properties and the Fragility of Asphalt Binders with Non-Arrhenius Viscosity–Temperature Dependence: , 2005 .

[48]  O. Mullins,et al.  Molecular Size and Structure of Asphaltenes from Various Sources , 2000 .

[49]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .