Higher order connectivity index of starlike trees

We show that for every integer h ≥ 0, the higher order connectivity index hχ(T) of a starlike tree T (a tree with unique vertex of degree > 2) is completely determined by its branches of length ≤ h. As a consequence, we show that starlike trees which have equal h-connectivity index for all h ≥ 0 are isomorphic.

[1]  Steven H. Bertz,et al.  Branching in graphs and molecules , 1988, Discret. Appl. Math..

[2]  M. Randic Characterization of molecular branching , 1975 .

[3]  D. H. Rouvray,et al.  The challenge of characterizing branching in molecular species , 1988, Discret. Appl. Math..

[4]  V. Tewari,et al.  Calculation of heat of formation :- Molecular connectivity and IOC-ω technique, a comparative study , 1984 .

[5]  Milan Randic,et al.  Algebraic characterization of skeletal branching , 1977 .

[6]  Milan Randic Representation of molecular graphs by basic graphs , 1992, J. Chem. Inf. Comput. Sci..

[7]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[8]  S. Unger Molecular Connectivity in Structure–activity Analysis , 1987 .

[9]  Milan Randić On structural ordering and branching of acyclic saturated hydrocarbons , 1998 .

[10]  Randić index and lexicographic order , 2000 .

[11]  J. A. Peña,et al.  The connectivity index of a weighted graph , 1998 .

[12]  N. Trinajstic Chemical Graph Theory , 1992 .

[13]  L B Kier,et al.  Molecular connectivity V: connectivity series concept applied to density. , 1976, Journal of pharmaceutical sciences.

[14]  Dennis H. Rouvray,et al.  Graph Theory and Topology in Chemistry , 1987 .

[15]  Dennis H. Rouvray,et al.  The modeling of chemical phenomena using topological indices , 1987 .

[16]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[17]  D. Rouvray Predicting chemistry from topology. , 1986, Scientific American.