Compressible Navier-Stokes equations

Compressible, stationary Navier-Stokes (N-S) equations are considered. The shape sensitivity analysis is performed in the case of small perturbations of the so-called it approximate solutions. The proposed method of shape sensitivity analysis is general, and can be used to establish the well-posedness for distributed and boundary control problems as well as for inverse problems in the case of the state equations in the form of compressible N-S equations.

[1]  R. F. Warming,et al.  An Implicit Factored Scheme for the Compressible Navier-Stokes Equations , 1977 .

[2]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[3]  V. A. Solonnikov,et al.  Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid , 1980 .

[4]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[5]  Takaaki Nishida,et al.  Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids , 1983 .

[6]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[7]  A. Majda,et al.  Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .

[8]  J. Vázquez,et al.  Fundamental Solutions and Asymptotic Behaviour for the p-Laplacian Equation , 1988 .

[9]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[10]  Denis Serre,et al.  Large amplitude variations for the density of a compressible viscous fluid. , 1991 .

[11]  A. Majda,et al.  Simplified asymptotic equations for the transition to detonation in reactive granular materials , 1992 .

[12]  L. Hou,et al.  Incompressible Computational Fluid Dynamics: Optimal Control and Optimization of Viscous, Incompressible Flows , 1993 .

[13]  David Hoff,et al.  Global Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data , 1995 .

[14]  P. Lions,et al.  Incompressible limit for a viscous compressible fluid , 1998 .

[15]  L. Hou,et al.  Boundary Value Problems and Optimal Boundary Control for the Navier--Stokes System: the Two-Dimensional Case , 1998 .

[16]  P. Lions,et al.  Incompressible Limit for Solutionsof the Isentropic Navier–Stokes Equationswith Dirichlet Boundary Conditions , 1999 .

[17]  Pierre-Louis Lions,et al.  Une approche locale de la limite incompressible , 1999 .

[18]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[19]  Hi Jun Choe,et al.  Strong solutions of the Navier-Stokes equations for isentropic compressible fluids , 2003 .

[20]  D. Hoff Uniqueness of Weak Solutions of the Navier-Stokes Equations of Multidimensional, Compressible Flow , 2006, SIAM J. Math. Anal..

[21]  Antoine Mellet,et al.  On the Barotropic Compressible Navier–Stokes Equations , 2007 .

[22]  Didier Bresch,et al.  On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids , 2007 .

[23]  Yann Brenier,et al.  Weak-Strong Uniqueness for Measure-Valued Solutions , 2009, 0912.1028.

[24]  A blow-up criterion for compressible viscous heat-conductive flows , 2010, 1006.2429.

[25]  B. Haspot,et al.  Existence of strong solutions in a larger space for the shallow-water system , 2011, 1107.2332.

[26]  Boris Haspot,et al.  Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids , 2010, 1005.0706.

[27]  B. Haspot Existence of global strong solutions for the barotropic Navier–Stokes system with large initial data on the rotational part of the velocity , 2012 .