The electrification of Florida thunderstorms
暂无分享,去创建一个
Six thunderstorms that occurred at the NASA Kennedy Space Center, Florida, have been studied in an attempt to characterize their electrical structure and electrification. Ground-based measurements of the cloud electric fields, the locations of lightning VHF radio sources, cloud-to-ground lightning strike points, and dual-polarization radar data were used in this study. Changes in the electric field due to lightning were used to determine the locations and magnitudes of changes in cloud charge. The fields themselves were used to compute displacement current densities following lightning flashes. The altitudes of negative charge regions were between 6.5 and 8.5 km and were almost constant. The altitude of upper positive charge exhibited more variability, and usually increased as cells developed. Amounts of charge removed by lightning increased during each cell in large storms but were nearly constant during the early part of small storms. A lower positive charge center (LPCC) usually appeared in the fields before any other charge regions could be detected at the ground. A LPCC appeared to be involved in the initiation of the majority of CG flashes. During periods of lightning, a LPCC was sometimes created by a flash, but more typically, LPCCs were produced by a cloud charge separation process. Displacement current densities were used to estimate charge accumulation rates in the cloud. The rates derived for the main negative and upper positive charge regions were compared to the average rate of charge removal by lightning. The generation rates and average lightning currents each had values ranging from 0.2 to 1.5 A and were approximately equal within expected errors in single-cell storms. Once the storm was multicellular, however, the lightning current was larger than the cloud charging rate, possibly because lightning was removing residual charge from older cells. The cloud charging rates and average lightning currents were compared with the currents computed using a non-inductive ice-graupel charging mechanism and radar-derived cloud microphysical data. This mechanism provided currents that were comparable to the observed charging rates and lightning currents and appeared to be capable of producing the LPCC.