Vegetation Segmentation in Cornfield Images Using Bag of Words

We provide an alternative methodology for vegetation segmentation in cornfield images. The process includes two main steps, which makes the main contribution of this approach: (a) a low-level segmentation and (b) a class label assignment using Bag of Words (BoW) representation in conjunction with a supervised learning framework. The experimental results show our proposal is adequate to extract green plants in images of maize fields. The accuracy for classification is 95.3 % which is comparable to values in current literature.

[1]  P. Balasubramaniam,et al.  Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy C-means clustering algorithm , 2015, Nonlinear Dynamics.

[2]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[3]  Jorge Torres-Sánchez,et al.  An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops , 2015, Comput. Electron. Agric..

[4]  Damon Afkari,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2011 .

[5]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[6]  Anup Vibhute,et al.  Applications of Image Processing in Agriculture: A Survey , 2012 .

[7]  Gonzalo Pajares,et al.  Camera Sensor Arrangement for Crop/Weed Detection Accuracy in Agronomic Images , 2013, Sensors.

[8]  Joachim Denzler,et al.  Semantic Segmentation with Millions of Features: Integrating Multiple Cues in a Combined Random Forest Approach , 2012, ACCV.

[9]  Dan Popescu,et al.  BiomassID: A biomass type identification system for mobile devices , 2015, Comput. Electron. Agric..

[10]  M. F. Kocher,et al.  Textural imaging and discriminant analysis for distinguishing weeds for spot spraying , 1998 .

[11]  Jayme G. A. Barbedo,et al.  3D Plant Modeling: Localization, Mapping and Segmentation for Plant Phenotyping Using a Single Hand-held Camera , 2014, ECCV Workshops.

[12]  Hocine Cherifi,et al.  Accuracy Measures for the Comparison of Classifiers , 2012, ICIT 2012.

[13]  Hossein Mousazadeh,et al.  A technical review on navigation systems of agricultural autonomous off-road vehicles , 2013 .

[14]  Ángela Ribeiro Seijas Robots versus pests (RHEA - Robot Fleets for Highly Effective Agriculture and Forestry Management) , 2014 .

[15]  Kyung-Soo Kim,et al.  Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields , 2015, Comput. Electron. Agric..

[16]  Guoquan Jiang,et al.  Automatic detection of crop rows based on multi-ROIs , 2015, Expert Syst. Appl..

[17]  Ross A Frick,et al.  Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis , 2011, Plant Methods.

[18]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[19]  Xavier P. Burgos-Artizzu,et al.  utomatic segmentation of relevant textures in agricultural images , 2010 .

[20]  Jörn Ostermann,et al.  Plant classification system for crop /weed discrimination without segmentation , 2014, IEEE Winter Conference on Applications of Computer Vision.

[21]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[22]  Benoît Mercatoris,et al.  Effective segmentation of green vegetation for resource-constrained real-time applications , 2015 .

[23]  Yiliang Zeng,et al.  Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot , 2014 .

[24]  Lutz Plümer,et al.  A review of advanced machine learning methods for the detection of biotic stress in precision crop protection , 2014, Precision Agriculture.

[25]  Ming Li,et al.  Review of research on agricultural vehicle autonomous guidance , 2009 .

[26]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[27]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[28]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[29]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[30]  Liping Chen,et al.  A New Approach for Greenness Identification from Maize Images , 2015, ICIC.

[31]  Aung Soe Khaing,et al.  WEED AND CROP SEGMENTATION AND CLASSIFICATION USING AREA THRESHOLDING , 2014 .

[32]  T. Kataoka,et al.  Crop growth estimation system using machine vision , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[33]  Leisa Armstrong,et al.  A survey of image processing techniques for agriculture , 2014 .

[34]  Frédéric Jurie,et al.  Category Level Object Segmentation by Combining Bag-of-Words Models with Dirichlet Processes and Random Fields , 2010, International Journal of Computer Vision.

[35]  Gonzalo Pajares,et al.  Discrete wavelets transform for improving greenness image segmentation in agricultural images , 2015, Comput. Electron. Agric..

[36]  Zhenghong Yu,et al.  Crop feature extraction from images with probabilistic superpixel Markov random field , 2015, Comput. Electron. Agric..

[37]  Robert Marti,et al.  Which is the best way to organize/classify images by content? , 2007, Image Vis. Comput..

[38]  Eric T. Matson,et al.  A Feature-Based Machine Learning Agent for Automatic Rice and Weed Discrimination , 2015, ICAISC.

[39]  Konrad Walus,et al.  Delivering high-resolution landmarks using inkjet micropatterning for spatial monitoring of leaf expansion , 2011, Plant Methods.

[40]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[41]  Virendra Tewari,et al.  Microcontroller based roller contact type herbicide applicator for weed control under row crops , 2014 .

[42]  Joachim Denzler,et al.  Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding , 2015, VISAPP.

[43]  G. Meyer,et al.  Verification of color vegetation indices for automated crop imaging applications , 2008 .

[44]  George E. Meyer,et al.  Plant species identification, size, and enumeration using machine vision techniques on near-binary images , 1993, Other Conferences.

[45]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[46]  Hans Jørgen Andersen,et al.  Exploiting affine invariant regions and leaf edge shapes for weed detection , 2015, Comput. Electron. Agric..

[47]  Hans Jørgen Andersen,et al.  Detecting creeping thistle in sugar beet fields using vegetation indices , 2015, Comput. Electron. Agric..

[48]  Gang Liu,et al.  Development of agricultural implement system based on machine vision and fuzzy control , 2015, Comput. Electron. Agric..

[49]  G. Meyer,et al.  Color indices for weed identification under various soil, residue, and lighting conditions , 1994 .