AI-STRATA: A User-Centered Model for Content-Based Description and Retrieval of Audiovisual Sequences

We first insist on the need for conceptual and knowledge-based audiovisual (AV) models in AV and multimedia information retrieval systems.We then propose several criteria for characterizing audio-visual representation approaches, and present a new approach for modeling and structuring AV documents with Annotations Interconnected Strata (AI-STRATA). This consists in analyzing AV documents through analysis dimensions allowing the detection of objects of interest of any type (structural, conceptual,... ). Annotations are structured by annotation elements (AE) representing both objects of interest and relationships. A knowledge base is used in order to monitor the annotation process. We show how to use annotations to link different strata on the base of explicit or implicit contexts and how AI-Strata can be used to build contextual views of a stratum, using both annotation and knowledge levels. We finally show how the model can efficiently support different description tasks such as indexing, searching and browsing audiovisual material.

[1]  Nozha Boujemaa,et al.  Surfimage: a flexible content-based image retrieval system , 1998, MULTIMEDIA '98.

[2]  Boon-Lock Yeo,et al.  Retrieving and visualizing video , 1997, CACM.

[3]  Alberto Del Bimbo,et al.  Multi-Perspective Navigation of Movies , 1996, J. Vis. Lang. Comput..

[4]  Wolfgang Effelsberg,et al.  Video abstracting , 1997, CACM.

[5]  Shih-Fu Chang,et al.  Visual information retrieval from large distributed online repositories , 1997, CACM.

[6]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[7]  Marc Davis,et al.  Media Streams: an iconic visual language for video annotation , 1993, Proceedings 1993 IEEE Symposium on Visual Languages.

[8]  Esther Dyson,et al.  Education and jobs in the digital world , 1997, CACM.

[9]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[10]  Philip J. Smith,et al.  Knowledge-Based Search Tactics , 1993, Inf. Process. Manag..

[11]  Nicholas J. Belkin,et al.  Braque: Design of an Interface to Support User Interaction in Information Retrieval , 1993, Inf. Process. Manag..

[12]  David K. Gifford,et al.  Composition and Search with a Video Algebra , 1995, IEEE Multim..

[13]  Glorianna Davenport,et al.  Cinematic primitives for multimedia , 1991, IEEE Computer Graphics and Applications.

[14]  Kuniaki Uehara,et al.  A Time-Stamped Authoring Graph for Video Databases , 1997, DEXA.

[15]  James Rucker,et al.  Siteseer: personalized navigation for the Web , 1997, CACM.

[16]  William I. Grosky,et al.  Managing multimedia information in database systems , 1997, CACM.

[17]  Tat-Seng Chua,et al.  A video retrieval and sequencing system , 1995, TOIS.

[18]  Simone Santini,et al.  In search of information in visual media , 1997, CACM.

[19]  Ramesh C. Jain Visual information management , 1997, CACM.

[20]  Jocelyne Nanard,et al.  Adding macroscopic semantics to anchors in knowledge-based hypertext , 1995, Int. J. Hum. Comput. Stud..

[21]  Dragutin Petkovic,et al.  Content-Based Representation and Retrieval of Visual Media: A State-of-the-Art Review , 1996 .

[22]  G. Davenport Indexes Are "Out, " Models Are "In" , 1996, IEEE Multim..

[23]  Katsumi Tanaka,et al.  OVID: Design and Implementation of a Video-Object Database System , 1993, IEEE Trans. Knowl. Data Eng..

[24]  K. Selçuk Candan,et al.  The Advanced Video Information System: data structures and query processing , 1996, Multimedia Systems.