Towards multifocal displays with dense focal stacks

We present a virtual reality display that is capable of generating a dense collection of depth/focal planes. This is achieved by driving a focus-tunable lens to sweep a range of focal lengths at a high frequency and, subsequently, tracking the focal length precisely at microsecond time resolutions using an optical module. Precise tracking of the focal length, coupled with a high-speed display, enables our lab prototype to generate 1600 focal planes per second. This enables a novel first-of-its-kind virtual reality multifocal display that is capable of resolving the vergence-accommodation conflict endemic to today's displays.

[1]  Gordon Wetzstein,et al.  Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays , 2016, CHI.

[2]  Anselmo Lastra,et al.  From Motion to Photons in 80 Microseconds: Towards Minimal Latency for Virtual and Augmented Reality , 2016, IEEE Transactions on Visualization and Computer Graphics.

[3]  A. Bhowmik,et al.  Design of a large aperture tunable refractive Fresnel liquid crystal lens. , 2018, Applied optics.

[4]  Andreas Georgiou,et al.  Holographic near-eye displays for virtual and augmented reality , 2017, ACM Trans. Graph..

[5]  Mary C. Whitton,et al.  Scene-adaptive high dynamic range display for low latency augmented reality , 2017, I3D.

[6]  Sheng Liu,et al.  An optical see-through head mounted display with addressable focal planes , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[7]  S. Serak,et al.  Thin waveplate lenses of switchable focal length--new generation in optics. , 2015, Optics express.

[8]  Rahul Narain,et al.  Blur and the perception of depth at occlusions. , 2016, Journal of vision.

[9]  Philip J. Bos,et al.  A Continuous Variable Lens System to Address the Accommodation Problem in VR and 3D Displays , 2018 .

[10]  Sheng Liu,et al.  A systematic method for designing depth-fused multi-focal plane three-dimensional displays. , 2010, Optics express.

[11]  M. Ernst,et al.  Focus cues affect perceived depth. , 2005, Journal of vision.

[12]  Fumio Kishino,et al.  Proposal for a 3‐D display with accommodative compensation: 3DDAC , 1996 .

[13]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[14]  Hong Hua,et al.  Enabling Focus Cues in Head-Mounted Displays , 2017, Proceedings of the IEEE.

[15]  Simon Foster,et al.  Optics , 1981, Arch. Formal Proofs.

[16]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[17]  Kevin J. MacKenzie,et al.  Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control. , 2010, Journal of vision.

[18]  Campbell Fw A method for measuring the depth of field of the human eye. , 1954 .

[19]  Kevin J. MacKenzie,et al.  Vergence and accommodation to multiple-image-plane stereoscopic displays: 'Real world' responses with practical image-plane separations? , 2011, Electronic Imaging.

[20]  Myron W. Krueger,et al.  Dynamic focusing in head-mounted displays , 1999, Electronic Imaging.

[21]  Peter Shirley,et al.  Near-eye varifocal augmented reality display using see-through screens , 2017, ACM Trans. Graph..

[22]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[23]  Monika Ritsch-Marte,et al.  Adjustable refractive power from diffractive moiré elements. , 2008, Applied optics.

[24]  Joohwan Kim,et al.  Perceptually-guided foveation for light field displays , 2017, ACM Trans. Graph..

[25]  Gordon Wetzstein,et al.  The light field stereoscope , 2015, ACM Trans. Graph..

[26]  Tsutomu Miyasato,et al.  7) System Development of Fatigue-less HMD System 3D DAC (3D Display with Accommodative Compensation : System Implementation of MK.4 in Light weight HMD([マルチメディア情報処理研究会映像表現研究会ネットワ-ク映像メディア研究会画像情報システム研究会]合同) , 1998 .

[27]  Christopher D. Saunter,et al.  Dynamic lens and monovision 3D displays to improve viewer comfort , 2015, Optics express.

[28]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[29]  Douglas Lanman,et al.  Fast gaze-contingent optimal decompositions for multifocal displays , 2017, ACM Trans. Graph..

[30]  Hong Hua,et al.  High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. , 2014, Optics express.

[31]  Aswin C. Sankaranarayanan,et al.  216 shades of gray: high bit-depth projection using light intensity control. , 2016, Optics express.

[32]  Byoungho Lee,et al.  TomoReal: Tomographic Displays , 2018, ArXiv.

[33]  Wolfgang Heidrich,et al.  High Brightness HDR Projection Using Dynamic Freeform Lensing , 2016, ACM Trans. Graph..

[34]  Gordon Wetzstein,et al.  Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays , 2017, Proceedings of the National Academy of Sciences.

[35]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[36]  Gordon Wetzstein,et al.  Accommodation-invariant computational near-eye displays , 2017, ACM Trans. Graph..

[37]  Kevin J. MacKenzie,et al.  Vergence and accommodation to multiple-image-plane stereoscopic displays: "real world" responses with practical image-plane separations? , 2012, J. Electronic Imaging.

[38]  Douglas Lanman,et al.  Near-eye light field displays , 2013, SIGGRAPH '13.

[39]  Douglas Lanman,et al.  Focal surface displays , 2017, ACM Trans. Graph..

[40]  Nikhil Balram,et al.  Design and optimization of a near-eye multifocal display system for augmented reality , 2015 .

[41]  Martin S. Banks,et al.  Creating effective focus cues in multi-plane 3D displays , 2011, Optics express.

[42]  Gregory Kramida,et al.  Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays , 2016, IEEE Transactions on Visualization and Computer Graphics.

[43]  Shree K. Nayar,et al.  Focal sweep videography with deformable optics , 2013, IEEE International Conference on Computational Photography (ICCP).

[44]  James F. O'Brien,et al.  Optimal presentation of imagery with focus cues on multi-plane displays , 2015, ACM Trans. Graph..

[45]  Sheng Liu,et al.  Time-multiplexed dual-focal plane head-mounted display with a liquid lens. , 2009, Optics letters.

[46]  Erik Blaser,et al.  Retinal blur and the perception of egocentric distance. , 2010, Journal of vision.