A New Obstacle Avoidance Method for Service Robots in Indoor Environments

The objective of this paper is to propose an obstacle avoidance method for  service  robots  in  indoor  environments  using  vision  and  ultrasonic  sensors. For  this research,  the  service  robot  was  programmed  to  deliver  a  drinking  cup from a specified starting point to the recognized customer. We have developed three main modules: one for face recognition, one for obstacle detection, and one for avoidance maneuvering. The obstacle avoidance system is based on an edg edetection  method  using  information  from  the  landmark  and  planned-path generation. Speed, direction and distance of the moving obstacle are measured using  vision  and  distance  sensors  in  order  for  the robot  to  make  an avoidance maneuver. Algorithms for obstacle avoidance are proposed and a new geometric model is introduced for making good avoidance maneuvers. The main aim of this research is to provide a complete mechanism for obstacle avoidance by vision based service robots, where common obstacle avoidance methods, such as PVM, do  not  provide  such  a  feature.  We  present the results  of  an  experiment  with  a service  robot  in  which  the  proposed  method  was  implemented,  after  which  its performance is evaluated.

[1]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[2]  Martin Buss,et al.  Bayesian state estimation and behavior selection for autonomous robotic exploration in dynamic environments , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Widodo Budiharto,et al.  A Novel Static and Moving Obstacles Avoidance Method Using Bayesian Filtering for Service Robot , 2010, 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies.

[4]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[5]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[6]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[7]  Yunchong Li,et al.  A novel obstacle avoidance and navigation method of outdoor mobile robot , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[8]  Panos E. Trahanias,et al.  Predictive control of robot velocity to avoid obstacles in dynamic environments , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ellips Masehian,et al.  Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target , 2007 .

[11]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Zhao Yanzheng,et al.  Research of the Localization of Restaurant Service Robot , 2010 .

[13]  Christian Laugier,et al.  Dynamic Obstacle Avoidance in uncertain environment combining PVOs and Occupancy Grid , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[14]  Yoshiaki Shirai,et al.  Mobile robot motion planning considering the motion uncertainty of moving obstacles , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[15]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[16]  Widodo Budiharto,et al.  Indoor Navigation using ANFIS Controller for Servant Robot , 2010 .

[17]  Juan A. Méndez,et al.  Design and Implementation of a Service robot for a Restaurant , 2006, Int. J. Robotics Autom..

[18]  Muhittin Gökmen,et al.  Robust Face Alignment for Illumination and Pose Invariant Face Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.