Tetrahedrizing Point Sets in Three Dimensions
暂无分享,去创建一个
[1] V. Klee. On the complexity ofd- dimensional Voronoi diagrams , 1979 .
[2] Robert E. Tarjan,et al. Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.
[3] S. Sutharshana. An approach to automatic three dimensional finite-element mesh generation: Cavendish, J C, Field, D A and Frey, W HInt. J. Numer. Methods Eng. Vol 8 (February 1985) pp 329–347 , 1985 .
[4] William H. Frey,et al. An apporach to automatic three‐dimensional finite element mesh generation , 1985 .
[5] F. P. Preparata,et al. Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.
[6] A. Brøndsted. An Introduction to Convex Polytopes , 1982 .
[7] R. Seidel. A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .
[8] Franco P. Preparata. A Note on Locating a Set of Points in a Planar Subdivision , 1979, SIAM J. Comput..
[9] M. Postnikov. Lectures in algebraic topology , 1983 .
[10] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[11] D. T. Lee,et al. Location of Multiple Points in a Planar Subdivision , 1979, Inf. Process. Lett..
[12] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[13] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1985, SCG '85.
[14] Bruce Rothschild,et al. On triangulations of the convex hull ofn points , 1985, Comb..
[15] David Avis,et al. Triangulating point sets in space , 1987, Discret. Comput. Geom..