Stochastic maximal Lp-regularity

In this article we prove a maximal Lp-regularity result for stochastic convolutions, which extends Krylov’s basic mixed Lp(Lq)-inequality for the Laplace operator on ℝd to large classes of elliptic operators, both on ℝd and on bounded domains in ℝd with various boundary conditions. Our method of proof is based on McIntosh’s H∞-functional calculus, R-boundedness techniques and sharp Lp(Lq)-square function estimates for stochastic integrals in Lq-spaces. Under an additional invertibility assumption on A, a maximal space–time Lp-regularity result is obtained as well.

[1]  N. Kalton,et al.  The H ∞ −calculus and sums of closed operators , 2001 .

[2]  N. Kalton,et al.  Perturbation and Interpolation Theorems for the H∞-Calculus with Applications to Differential Operators , 2006 .

[3]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[4]  Zdzisław Brzeźniak,et al.  Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .

[5]  Nicolai V. Krylov,et al.  On Lp-theory of stochastic partial di6erential equations in the whole space , 1996 .

[6]  X. Duong,et al.  Bounded holomorphic functional calculus for non-divergence form differential operators , 2002, Differential and Integral Equations.

[7]  N. Krylov On the Foundation of the Lp-Theory of Stochastic Partial Differential Equations , 2005 .

[8]  Giuseppe Da Prato,et al.  Maximal regularity for stochastic convolutions in \( L^p \) spaces , 1998 .

[9]  Pascal Auscher,et al.  The solution of the Kato square root problem for second order elliptic operators on Rn , 2002 .

[10]  L. Weis,et al.  Erratum to: Perturbation and interpolation theorems for the H∞-calculus with applications to differential operators , 2013, Mathematische Annalen.

[11]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[12]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[13]  Jan van Neerven,et al.  Maximal Lp-Regularity for Stochastic Evolution Equations , 2011, SIAM J. Math. Anal..

[14]  J. Maas,et al.  Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces , 2008, 0804.1432.

[15]  J. Prüss,et al.  On operators with bounded imaginary powers in banach spaces , 1990 .

[16]  M. Veraar,et al.  Conditions for stochastic integrability in UMD Banach spaces , 2007, 0805.1458.

[17]  Erika Hausenblas,et al.  Maximal regularity for stochastic convolutions driven by Lévy processes , 2009 .

[18]  W. Arendt,et al.  Maximal Lp-regularity for parabolic and elliptic equations on the line , 2006 .

[19]  F. Sukochev,et al.  Schauder decompositions and multiplier theorems , 2000 .

[20]  M. Veraar,et al.  Stochastic evolution equations in UMD Banach spaces , 2008, 0804.0932.

[21]  H. Dym,et al.  Operator theory: Advances and applications , 1991 .

[22]  J. Neerven γ-Radonifying Operators: A Survey , 2010 .

[23]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[24]  Robert Denk,et al.  Fourier multipliers and problems of elliptic and parabolic type , 2003 .

[25]  Jean Cea,et al.  Partial Differential Equations and Functional Analysis , 1996 .

[26]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[27]  J.M.A.M. van Neerven,et al.  On the stochastic Fubini theorem in infinite dimensions , 2005 .

[28]  P. Kunstmann,et al.  Calderón-Zygmund theory for non-integral operators and the H∞ functional calculus , 2004 .

[29]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[30]  René Carmona,et al.  Stochastic Partial Differential Equations: Six Perspectives , 1998 .

[31]  M. Veraar Continuous local martingales and stochastic integration in UMD Banach spaces , 2007 .

[32]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[33]  C. L. Merdy,et al.  ON SQUARE FUNCTIONS ASSOCIATED TO SECTORIAL OPERATORS , 2004 .

[34]  Xuan Duong,et al.  Operator Theory and Harmonic Analysis , 2021, Springer Proceedings in Mathematics & Statistics.

[35]  N. Kalton,et al.  The $H^{\infty}$-Functional Calculus and Square Function Estimates , 2014, 1411.0472.

[36]  W. Desch,et al.  A generalization of an inequality by N. V. Krylov , 2009 .

[37]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .

[38]  P. Kunstmann,et al.  Calderón-Zygmund theory for non-integral operators and the $H^{\infty}$ functional calculus , 2003 .

[39]  N. Krylov SPDEs in $L_q( ( 0,\tau ] , L_p)$ Spaces , 2000 .

[40]  H. Amann,et al.  Bounded $H_\infty$-calculus for elliptic operators , 1994, Differential and Integral Equations.

[41]  Rico Zacher,et al.  Maximal regularity of type Lp for abstract parabolic Volterra equations , 2005 .

[42]  M. Fowler,et al.  Function Spaces , 2022 .

[43]  N. Krylov A BRIEF OVERVIEW OF THE Lp-THEORY OF SPDES , 2008 .

[44]  J. Prüss,et al.  New thoughts on old results of R.T. Seeley , 2004 .

[45]  Jan Prüss,et al.  Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces , 2002 .

[46]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[47]  A. Mcintosh Operators which have an $H_{infty}$ functional calculus , 1986 .

[48]  M. Cowling,et al.  Banach space operators with a bounded H∞ functional calculus , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[49]  F. Flandoli On the semigroup approach to stochastic evolution equations , 1992 .

[50]  S. Guerre-Delabrière $L_{p}$-regularity of the Cauchy problem and the geometry of Banach spaces , 1995 .

[51]  L. Weis The H ∞ Holomorphic Functional Calculus for Sectorial Operators — a Survey , 2006 .

[52]  Joram Lindenstrauss Classical Banach Spaces II: Function Spaces , 1979 .

[53]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[54]  P. Auscher,et al.  Holomorphic functional calculi of operators, quadratic estimates and interpolation , 1997 .

[55]  The $H^{\infty}-$calculus and sums of closed operators , 2000, math/0010155.