Stochastic maximal Lp-regularity
暂无分享,去创建一个
[1] N. Kalton,et al. The H ∞ −calculus and sums of closed operators , 2001 .
[2] N. Kalton,et al. Perturbation and Interpolation Theorems for the H∞-Calculus with Applications to Differential Operators , 2006 .
[3] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[4] Zdzisław Brzeźniak,et al. Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .
[5] Nicolai V. Krylov,et al. On Lp-theory of stochastic partial di6erential equations in the whole space , 1996 .
[6] X. Duong,et al. Bounded holomorphic functional calculus for non-divergence form differential operators , 2002, Differential and Integral Equations.
[7] N. Krylov. On the Foundation of the Lp-Theory of Stochastic Partial Differential Equations , 2005 .
[8] Giuseppe Da Prato,et al. Maximal regularity for stochastic convolutions in \( L^p \) spaces , 1998 .
[9] Pascal Auscher,et al. The solution of the Kato square root problem for second order elliptic operators on Rn , 2002 .
[10] L. Weis,et al. Erratum to: Perturbation and interpolation theorems for the H∞-calculus with applications to differential operators , 2013, Mathematische Annalen.
[11] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[12] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .
[13] Jan van Neerven,et al. Maximal Lp-Regularity for Stochastic Evolution Equations , 2011, SIAM J. Math. Anal..
[14] J. Maas,et al. Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces , 2008, 0804.1432.
[15] J. Prüss,et al. On operators with bounded imaginary powers in banach spaces , 1990 .
[16] M. Veraar,et al. Conditions for stochastic integrability in UMD Banach spaces , 2007, 0805.1458.
[17] Erika Hausenblas,et al. Maximal regularity for stochastic convolutions driven by Lévy processes , 2009 .
[18] W. Arendt,et al. Maximal Lp-regularity for parabolic and elliptic equations on the line , 2006 .
[19] F. Sukochev,et al. Schauder decompositions and multiplier theorems , 2000 .
[20] M. Veraar,et al. Stochastic evolution equations in UMD Banach spaces , 2008, 0804.0932.
[21] H. Dym,et al. Operator theory: Advances and applications , 1991 .
[22] J. Neerven. γ-Radonifying Operators: A Survey , 2010 .
[23] Herbert Amann,et al. Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .
[24] Robert Denk,et al. Fourier multipliers and problems of elliptic and parabolic type , 2003 .
[25] Jean Cea,et al. Partial Differential Equations and Functional Analysis , 1996 .
[26] K. Hoffman. Banach Spaces of Analytic Functions , 1962 .
[27] J.M.A.M. van Neerven,et al. On the stochastic Fubini theorem in infinite dimensions , 2005 .
[28] P. Kunstmann,et al. Calderón-Zygmund theory for non-integral operators and the H∞ functional calculus , 2004 .
[29] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[30] René Carmona,et al. Stochastic Partial Differential Equations: Six Perspectives , 1998 .
[31] M. Veraar. Continuous local martingales and stochastic integration in UMD Banach spaces , 2007 .
[32] Markus Haase,et al. The Functional Calculus for Sectorial Operators , 2006 .
[33] C. L. Merdy,et al. ON SQUARE FUNCTIONS ASSOCIATED TO SECTORIAL OPERATORS , 2004 .
[34] Xuan Duong,et al. Operator Theory and Harmonic Analysis , 2021, Springer Proceedings in Mathematics & Statistics.
[35] N. Kalton,et al. The $H^{\infty}$-Functional Calculus and Square Function Estimates , 2014, 1411.0472.
[36] W. Desch,et al. A generalization of an inequality by N. V. Krylov , 2009 .
[37] Z. Brzeźniak. On stochastic convolution in banach spaces and applications , 1997 .
[38] P. Kunstmann,et al. Calderón-Zygmund theory for non-integral operators and the $H^{\infty}$ functional calculus , 2003 .
[39] N. Krylov. SPDEs in $L_q( ( 0,\tau ] , L_p)$ Spaces , 2000 .
[40] H. Amann,et al. Bounded $H_\infty$-calculus for elliptic operators , 1994, Differential and Integral Equations.
[41] Rico Zacher,et al. Maximal regularity of type Lp for abstract parabolic Volterra equations , 2005 .
[42] M. Fowler,et al. Function Spaces , 2022 .
[43] N. Krylov. A BRIEF OVERVIEW OF THE Lp-THEORY OF SPDES , 2008 .
[44] J. Prüss,et al. New thoughts on old results of R.T. Seeley , 2004 .
[45] Jan Prüss,et al. Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces , 2002 .
[46] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[47] A. Mcintosh. Operators which have an $H_{infty}$ functional calculus , 1986 .
[48] M. Cowling,et al. Banach space operators with a bounded H∞ functional calculus , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[49] F. Flandoli. On the semigroup approach to stochastic evolution equations , 1992 .
[50] S. Guerre-Delabrière. $L_{p}$-regularity of the Cauchy problem and the geometry of Banach spaces , 1995 .
[51] L. Weis. The H ∞ Holomorphic Functional Calculus for Sectorial Operators — a Survey , 2006 .
[52] Joram Lindenstrauss. Classical Banach Spaces II: Function Spaces , 1979 .
[53] Herbert Amann,et al. Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.
[54] P. Auscher,et al. Holomorphic functional calculi of operators, quadratic estimates and interpolation , 1997 .
[55] The $H^{\infty}-$calculus and sums of closed operators , 2000, math/0010155.