Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast‐enhanced MRI data in squamous cell carcinoma of the head and neck

To investigate the effect of transcytolemmal water exchange on the dynamic contrast‐enhanced (DCE) T1‐weighted MRI of human squamous cell carcinomas of the head and neck (HNSCC).

[1]  J. Gore,et al.  Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. , 2005, Magnetic resonance imaging.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Wei Huang,et al.  Evidence for shutter‐speed variation in CR bolus‐tracking studies of human pathology , 2005, NMR in biomedicine.

[4]  J. Neil,et al.  Evidence that both fast and slow water ADC components arise from intracellular space , 2002, Magnetic resonance in medicine.

[5]  C. Springer,et al.  Relaxographic imaging. , 1994, Journal of magnetic resonance. Series B.

[6]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[7]  W. Rooney,et al.  Determination of the MRI contrast agent concentration time course in vivo following bolus injection: Effect of equilibrium transcytolemmal water exchange , 2000, Magnetic resonance in medicine.

[8]  H Baddeley,et al.  Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. , 1999, The British journal of radiology.

[9]  Josef Pfeuffer,et al.  Restricted diffusion and exchange of intracellular water: theoretical modelling and diffusion time dependence of 1H NMR measurements on perfused glial cells , 1998, NMR in biomedicine.

[10]  Wei Huang,et al.  Shutter‐speed analysis of contrast reagent bolus‐tracking data: Preliminary observations in benign and malignant breast disease , 2005, Magnetic resonance in medicine.

[11]  A Heerschap,et al.  Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium‐DTPA‐enhanced MRI and localized 19F MRS pharmacokinetic studies of 5‐fluorouracil , 2007, NMR in biomedicine.

[12]  P S Tofts,et al.  Quantitative Analysis of Dynamic Gd‐DTPA Enhancement in Breast Tumors Using a Permeability Model , 1995, Magnetic resonance in medicine.

[13]  A Heerschap,et al.  Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors , 2001, Journal of magnetic resonance imaging : JMRI.

[14]  J L Evelhoch,et al.  Key factors in the acquisition of contrast kinetic data for oncology , 1999, Journal of magnetic resonance imaging : JMRI.

[15]  S. Cha,et al.  Update on brain tumor imaging: from anatomy to physiology. , 2006, AJNR. American journal of neuroradiology.

[16]  Thomas E Yankeelov,et al.  Variation of the relaxographic “shutter‐speed” for transcytolemmal water exchange affects the CR bolus‐tracking curve shape , 2003, Magnetic resonance in medicine.

[17]  Rong Zhou,et al.  Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: Effects of transcytolemmal water exchange , 2004, Magnetic resonance in medicine.

[18]  S. Merajver,et al.  Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[19]  M. Kaplan,et al.  Challenges in dynamic contrast‐enhanced MRI imaging of cervical lymph nodes to detect metastatic disease , 2003, Journal of magnetic resonance imaging : JMRI.

[20]  Wolfgang Dreher,et al.  Diffusion in compartmental systems. I. A comparison of an analytical model with simulations , 2003, Magnetic resonance in medicine.

[21]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[22]  Xin Li,et al.  Equilibrium transcytolemmal water‐exchange kinetics in skeletal muscle in vivo , 1999, Magnetic resonance in medicine.

[23]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[24]  D G Norris,et al.  Detection of apparent restricted diffusion in healthy rat brain at short diffusion times , 1994, Magnetic resonance in medicine.

[25]  T. Duong,et al.  Evaluation of extra‐ and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR , 1998, Magnetic resonance in medicine.

[26]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[27]  Hiroyuki Kabasawa,et al.  Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors , 2003, Journal of Neuro-Oncology.

[28]  G. Parker,et al.  DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents , 2007, British Journal of Cancer.

[29]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[30]  D. Norris The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment , 2001, NMR in biomedicine.

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[32]  W. Jiang Membrane ruffling of cancer cells: a parameter of tumour cell motility and invasion. , 1995, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[33]  P F Sharp The measurement of blood flow in humans using radioactive tracers. , 1994, Physiological measurement.

[34]  W. Semmler,et al.  Kinetic modeling of in vivo—nuclear magnetic resonance spectroscopy data: 5–Fluorouracil in liver and liver tumors , 1991, Clinical pharmacology and therapeutics.

[35]  J L Evelhoch,et al.  Measurement of relative regional tumor blood flow in mice by deuterium NMR imaging , 1992, Magnetic resonance in medicine.

[36]  Charles S Springer,et al.  Equilibrium water exchange between the intra‐ and extracellular spaces of mammalian brain , 2003, Magnetic resonance in medicine.

[37]  S. Kety,et al.  THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES. , 1948, The Journal of clinical investigation.

[38]  L R Schad,et al.  Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. , 1991, Journal of computer assisted tomography.

[39]  W E Reddick,et al.  MR imaging of tumor microcirculation: Promise for the new millenium , 1999, Journal of magnetic resonance imaging : JMRI.

[40]  Detecting early response to cyclophosphamide treatment of RIF‐1 tumors using selective multiple quantum spectroscopy (SelMQC) and dynamic contrast enhanced imaging , 2003, NMR in biomedicine.

[41]  Xin Li,et al.  A unified magnetic resonance imaging pharmacokinetic theory: Intravascular and extracellular contrast reagents , 2005, Magnetic resonance in medicine.

[42]  Lawrence Dougherty,et al.  Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution , 2004, Magnetic resonance in medicine.