Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency

[1]  O. Hamdaoui,et al.  Sonochemical Treatment of Textile Wastewater , 2020 .

[2]  O. Hamdaoui,et al.  Sonochemical and photosonochemical degradation of endocrine disruptor 2-phenoxyethanol in aqueous media , 2018, Separation and Purification Technology.

[3]  O. Hamdaoui,et al.  Characterization and application of a 1700-kHz acoustic cavitation field for water decontamination: a case study with toluidine blue , 2018, Applied Water Science.

[4]  M. Bouhelassa,et al.  New aspect of the effect of liquid temperature on sonochemical degradation of nonvolatile organic pollutants in aqueous media , 2018, Separation and Purification Technology.

[5]  J. Khim,et al.  A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. , 2018, Ultrasonics sonochemistry.

[6]  Kaouther Kerboua,et al.  Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble. , 2018, Ultrasonics sonochemistry.

[7]  M. Ashokkumar,et al.  A model for the effect of bulk liquid viscosity on cavitation bubble dynamics. , 2017, Physical chemistry chemical physics : PCCP.

[8]  O. Hamdaoui,et al.  The size of active bubbles for the production of hydrogen in sonochemical reaction field. , 2016, Ultrasonics sonochemistry.

[9]  M. Ashokkumar,et al.  Theory of Sonochemistry , 2016, Topics in Current Chemistry.

[10]  T. Tuziuti,et al.  Extreme conditions in a dissolving air nanobubble. , 2016, Physical review. E.

[11]  Y. Rezgui,et al.  Computational engineering study of hydrogen production via ultrasonic cavitation in water , 2016 .

[12]  Y. Rezgui,et al.  Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water. , 2016, Ultrasonics sonochemistry.

[13]  Y. Rezgui,et al.  Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water. , 2015, Ultrasonics sonochemistry.

[14]  Y. Rezgui,et al.  Mechanism of the sonochemical production of hydrogen , 2015 .

[15]  Y. Rezgui,et al.  New interpretation of the effects of argon-saturating gas toward sonochemical reactions. , 2015, Ultrasonics sonochemistry.

[16]  Y. Son Advanced Oxidation Processes Using Ultrasound Technology for Water and Wastewater Treatment , 2015 .

[17]  C. Pétrier The use of power ultrasound for water treatment , 2015 .

[18]  Y. Rezgui,et al.  Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. , 2015, Ultrasonics sonochemistry.

[19]  Y. Rezgui,et al.  A method for predicting the number of active bubbles in sonochemical reactors. , 2015, Ultrasonics sonochemistry.

[20]  Yacine Rezgui,et al.  Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters. , 2014, Ultrasonics.

[21]  Y. Rezgui,et al.  Computer simulation of chemical reactions occurring in collapsing acoustical bubble: dependence of free radicals production on operational conditions , 2015, Research on Chemical Intermediates.

[22]  Y. Rezgui,et al.  Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study. , 2013, Ultrasonics sonochemistry.

[23]  M. Swaminathan,et al.  Advanced Oxidation Processes for Wastewater Treatment , 2013 .

[24]  M. Ashokkumar The characterization of acoustic cavitation bubbles - an overview. , 2011, Ultrasonics sonochemistry.

[25]  Pankaj,et al.  Theoretical and Experimental Sonochemistry Involving Inorganic Systems , 2011 .

[26]  C. Dopazo,et al.  Influence of the accommodation coefficient on nonlinear bubble oscillations. , 2010, The Journal of the Acoustical Society of America.

[27]  O. Hamdaoui,et al.  Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. , 2010, Journal of hazardous materials.

[28]  O. Hamdaoui,et al.  Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives. , 2010 .

[29]  M. Ashokkumar,et al.  Bubble population phenomena in sonochemical reactor: I estimation of bubble size distribution and its number density with pulsed sonication - laser diffraction method. , 2010, Ultrasonics sonochemistry.

[30]  Muthupandian Ashokkumar,et al.  Effect of power and frequency on bubble-size distributions in acoustic cavitation. , 2009, Physical review letters.

[31]  Aniruddha B. Pandit,et al.  Oscillating bubble concentration and its size distribution using acoustic emission spectra. , 2009, Ultrasonics sonochemistry.

[32]  T. Tuziuti,et al.  The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. , 2008, The Journal of chemical physics.

[33]  C. Pulgarin,et al.  Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. , 2008, Ultrasonics sonochemistry.

[34]  Muthupandian Ashokkumar,et al.  Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. , 2008, Ultrasonics sonochemistry.

[35]  Linda K. Weavers,et al.  Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid. , 2008, The journal of physical chemistry. B.

[36]  T. Tuziuti,et al.  Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. , 2007, The Journal of chemical physics.

[37]  T. Waite,et al.  Sonolysis of 4-chlorophenol in aqueous solution: effects of substrate concentration, aqueous temperature and ultrasonic frequency. , 2006, Ultrasonics sonochemistry.

[38]  J. Holzfuss Unstable diffusion and chemical dissociation of a single sonoluminescing bubble. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Yasuo Iida,et al.  Sonoluminescence , 2004 .

[40]  T. Tuziuti,et al.  Theoretical study of the ambient-pressure dependence of sonochemical reactions , 2003 .

[41]  Hideto Mitome,et al.  A standard method to calibrate sonochemical efficiency of an individual reaction system. , 2003, Ultrasonics sonochemistry.

[42]  D. Lohse,et al.  Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory , 2003 .

[43]  R. Toegel Reaction-Diffusion Kinetics of a Single Sonoluminescing Bubble , 2002 .

[44]  K. Yasui Influence of ultrasonic frequency on multibubble sonoluminescence. , 2002, The Journal of the Acoustical Society of America.

[45]  S. Labouret,et al.  Bubble size distribution estimation via void rate dissipation in gas saturated liquid. Application to ultrasonic cavitation bubble fields , 2002 .

[46]  T. Tuziuti,et al.  Effect of ambient-pressure reduction on multibubble sonochemiluminescence , 2002 .

[47]  Y. Adewuyi,et al.  Sonochemistry: Environmental Science and Engineering Applications , 2001 .

[48]  K. Yasui Effect of liquid temperature on sonoluminescence. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Inez Hua,et al.  Impact of Ultrasonic Frequency on Aqueous Sonoluminescence and Sonochemistry , 2001 .

[50]  N. A. Tsochatzidis,et al.  Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique , 2001 .

[51]  K. Yasui Single-bubble sonoluminescence from noble gases. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  I. Hua,et al.  Elucidation of the 1,4-Dioxane Decomposition Pathway at Discrete Ultrasonic Frequencies , 2000 .

[53]  A. Szeri,et al.  Water vapour, sonoluminescence and sonochemistry , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  Joon-Wun Kang,et al.  Sonolytic Destruction of Methyl tert-Butyl Ether by Ultrasonic Irradiation: The Role of O3, H2O2, Frequency, and Power Density , 1999 .

[55]  N. A. Tsochatzidis,et al.  Characterisation of the acoustic cavitation cloud by two laser techniques. , 1999, Ultrasonics sonochemistry.

[56]  Detlef Lohse,et al.  Predictions for upscaling sonoluminescence , 1998 .

[57]  K. Suslick Sonoluminescence and sonochemistry , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[58]  C. Pétrier,et al.  Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. , 1997, Ultrasonics sonochemistry.

[59]  K. Yasui Chemical reactions in a sonoluminescing bubble , 1997 .

[60]  I. Hua,et al.  Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology , 1997 .

[61]  A. Wilhelm,et al.  Modelling of free radicals production in a collapsing gas-vapour bubble. , 1997, Ultrasonics sonochemistry.

[62]  K. Yasui A new formulation of bubble dynamics for sonoluminescence , 1996 .

[63]  B. David,et al.  Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution: Preliminary results , 1996 .

[64]  K. Yasui Effects of thermal conduction on bubble dynamics near the sonoluminescence threshold , 1995 .

[65]  K. Suslick,et al.  The Temperature of Cavitation , 1991, Science.

[66]  R. Kopp Determination of the velocity , 1989 .

[67]  R. Verrall,et al.  The effect of ultrasound on water in the presence of dissolved gases , 1976 .