A hybrid 8-node hexahedral element for static and free vibration analysis

An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed for static and free vibration analyses. The element formulation is based directly on an 8-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational principle. Numerical examples are presented to show the validity and efficiency of the present element for static and free vibration analysis.

[1]  K. Y. Sze,et al.  Hybrid stress tetrahedral elements with Allman's rotational D.O.F.s , 2000 .

[2]  C. Choi,et al.  Three dimensional transition solid elements for adaptive mesh gradation , 1993 .

[3]  Robert L. Harder,et al.  A refined four-noded membrane element with rotational degrees of freedom , 1988 .

[4]  K. Y. Sze,et al.  SOLID ELEMENTS WITH ROTATIONAL DOFs BY EXPLICIT HYBRID STABILIZATION , 1996 .

[5]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[6]  Byung Chai Lee,et al.  New stress assumption for hybrid stress elements and refined four-node plane and eight-node brick elements , 1997 .

[7]  K. Y. Sze,et al.  A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation , 2000 .

[8]  S. Atluri,et al.  Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybrid-stress elements , 1984 .

[9]  K. Y. Sze,et al.  A 12‐node hybrid stress brick element for beam/column analysis , 1999 .

[10]  Chang-Koon Choi,et al.  Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom , 1996 .

[11]  Ean Tat Ooi,et al.  A 20‐node hexahedron element with enhanced distortion tolerance , 2004 .

[12]  Ning Hu,et al.  A 3D brick element based on Hu–Washizu variational principle for mesh distortion , 2002 .

[13]  G. Prathap,et al.  A field-consistent formulation for the eight-noded solid finite element , 1989 .

[14]  Amin Ghali,et al.  Hybrid hexahedral element for solids, plates, shells and beams by selective scaling , 1993 .

[15]  Guan-Yuan Wu,et al.  A mixed 8-node hexahedral element based on the Hu-Washizu principle and the field extrapolation technique , 2004 .

[16]  Edward L. Wilson,et al.  Thick shell and solid finite elements with independent rotation fields , 1991 .

[17]  Robert D. Cook,et al.  On improved hybrid finite elements with rotational degrees of freedom , 1989 .

[18]  Yoshihiro Narita,et al.  Natural frequencies of simply supported circular plates , 1980 .

[19]  S. V. Hoa,et al.  Classification of stress modes in assumed stress fields of hybrid finite elements , 1997 .

[20]  Y. K. Cheung,et al.  Three-dimensional 8-node and 20-node refined hybrid isoparametric elements , 1992 .

[21]  Theodore H. H. Pian,et al.  Relations between incompatible displacement model and hybrid stress model , 1986 .

[22]  Gangan Prathap,et al.  Eight-node field-consistent hexahedron element in dynamic problems , 1999 .

[23]  Chang-Koon Choi,et al.  Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements , 2001 .

[24]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[25]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[26]  T. Pian,et al.  On the suppression of zero energy deformation modes , 1983 .