Neural Networks for the Prediction of Species-Specific Plot Volumes Using Airborne Laser Scanning and Aerial Photographs

Parametric and nonparametric modeling methods have been widely used for the estimation of forest attributes from airborne laser-scanning data and aerial photographs. However, the methods adopted suffered from complex remote-sensed data structures involving high dimensions, nonlinear relationships, different statistical distributions, and outliers. In this context, artificial neural networks (ANNs) are of interest as they have many clear benefits over conventional modeling methods and could then enhance the accuracy of current forest-inventory methods. This paper examines the ability of common ANN modeling techniques for the prediction of species-specific forest attributes, as exemplified here with the prediction stem volumes (cubic meters per hectare) at the field plot and forest stand levels. Three modeling methods were evaluated, namely, the multilayer perceptron (MLP), support vector regression (SVR), and self-organizing map, and intercompared with the corresponding nonparametric k most similar neighbor method using cross-validated statistical performance indexes. To decrease the number of model-input variables, a multiobjective input-selection method based on genetic algorithm is adopted. The numerical results obtained in the study suggest that ANNs are appropriate and accurate methods for the assessment of species-specific forest attributes, which can be used as alternatives to multivariate linear regression and nonparametric nearest neighbor models. Among the ANN models, SVR and MLP provide the best choices for prediction purposes as they yielded high prediction accuracies for species-specific tree volumes throughout.

[1]  Albert R. Stage,et al.  Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.

[2]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[3]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[4]  David Fletcher,et al.  Modelling skewed data with many zeros: A simple approach combining ordinary and logistic regression , 2005, Environmental and Ecological Statistics.

[5]  Craig A. Coburn,et al.  A multiscale texture analysis procedure for improved forest stand classification , 2004 .

[6]  M. Maltamo,et al.  Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data , 2006 .

[7]  K. Lim,et al.  Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .

[8]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[9]  Steen Magnussen,et al.  Recovering Tree Heights from Airborne Laser Scanner Data , 1999, Forest Science.

[10]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[11]  Markus Hollaus,et al.  Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).

[12]  M. Maltamo,et al.  The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .

[13]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[14]  R. Hall,et al.  Incorporating texture into classification of forest species composition from airborne multispectral images , 2000 .

[15]  Hans-Erik Andersen,et al.  STATISTICAL PROPERTIES OF MEAN STAND BIOMASS ESTIMATORS IN A LIDAR- BASED DOUBLE SAMPLING FOREST SURVEY DESIGN , 2007 .

[16]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[17]  M. Maltamo,et al.  Forest stand characteristics estimation using a most similar neighbor approach and image spatial structure information , 2001 .

[18]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[19]  J. Dubois,et al.  Evaluation Of The Grey-level Co-occurrence Matrix Method For Land-cover Classification Using Spot Imagery , 1990 .

[20]  Teuvo Kohonen,et al.  Self-Organizing Maps, Second Edition , 1997, Springer Series in Information Sciences.

[21]  Mikko Kolehmainen,et al.  Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations , 2005 .

[22]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[23]  Cheng-Hua Wang,et al.  Support vector regression with genetic algorithms in forecasting tourism demand , 2007 .

[24]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[25]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[26]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[27]  Sakari Tuominen,et al.  Performance of different spectral and textural aerial photograph features in multi-source forest inventory , 2005 .

[28]  Jennifer L. R. Jensen,et al.  Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint lidar , 2006 .

[29]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[30]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[31]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[32]  François A. Gougeon,et al.  Forest information extraction from high spatial resolution images using an individual tree crown approach , 2003 .

[33]  Jouko Laasasenaho Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .

[34]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[35]  Petteri Packalen,et al.  Using airborne laser scanning data and digital aerial photographs to estimate growing stock by tree species , 2009 .

[36]  K. Korhonen,et al.  Kuvioittaisen arvioinnin luotettavuus , 1970 .

[37]  J. Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning , 2004 .

[38]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[40]  I. Korpela,et al.  Single-tree forest inventory using lidar and aerial images for 3D treetop positioning, species recognition, height and corwn width estimation , 2007 .

[41]  M. Torma,et al.  ESTIMATION OF TREE SPECIES PROPORTIONS OF FOREST STANDS USING LASER SCANNING , 2000 .

[42]  Michael T. Manry,et al.  Attributes of neural networks for extracting continuous vegetation variables from optical and radar , 1998 .

[43]  John R. Jensen,et al.  Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data , 1999 .

[44]  A. Pekkarinen,et al.  Local radiometric correction of digital aerial photographs for multi source forest inventory , 2004 .

[45]  F L West LONG-TIME TEMPERATURE PREDICTION. , 1920, Science.

[46]  C B Davenport THE VALUE OF SCIENTIFIC GENEALOGY. , 1915, Science.

[47]  Terje Gobakken,et al.  Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data , 2005 .

[48]  Yang Wang,et al.  Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model , 1997 .

[49]  Yaqiu Jin,et al.  Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks , 1997 .

[50]  Gretchen G. Moisen,et al.  Comparing five modelling techniques for predicting forest characteristics , 2002 .