Memory Interfaces: Past, Present, and Future

Over the last few decades, the bandwidth of dynamic random-access memory (DRAM) has increased significantly through innovative architectures and circuit-level techniques to overcome the well-known "memory wall" problem. We can understand the past challenges of DRAM input/output (I/O) by investigating the technologies utilized for DRAM I/O in the transition from single-data-rate (SDR) synchronous DRAM (SDRAM)to double-data-rate (DDR) SDRAM. Recently developed versions of low-power DDR four (LPDDR4) and synchronous graphics DDR five (GDDR5) employ new I/O features for further bandwidth increase. Looking beyond LPDDR4 and GDDR5, what should be done to make another jump in bandwidth increase for DRAM?

[1]  Onur Mutlu,et al.  Tiered-latency DRAM: A low latency and low cost DRAM architecture , 2013, 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA).

[2]  Chulwoo Kim,et al.  Survey and Analysis of Delay-Locked Loops Used in DRAM Interfaces , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[3]  Y. Koshikawa,et al.  250 Mbyte/s synchronous DRAM using a 3-stage-pipelined architecture , 1994 .

[4]  Thomas H. Lee,et al.  A 2.5 V CMOS delay-locked loop for 18 Mbit, 500 megabyte/s DRAM , 1994, IEEE J. Solid State Circuits.

[5]  Jaejin Lee,et al.  A 1.2 V 8 Gb 8-Channel 128 GB/s High-Bandwidth Memory (HBM) Stacked DRAM With Effective I/O Test Circuits , 2015, IEEE Journal of Solid-State Circuits.

[6]  Onur Mutlu,et al.  A case for exploiting subarray-level parallelism (SALP) in DRAM , 2012, 2012 39th Annual International Symposium on Computer Architecture (ISCA).

[7]  Peter Gregorius,et al.  A 75 nm 7 Gb/s/pin 1 Gb GDDR5 Graphics Memory Device With Bandwidth Improvement Techniques , 2010, IEEE Journal of Solid-State Circuits.

[8]  Peter Gregorius,et al.  75nm 7Gb/s/pin 1Gb GDDR5 graphics memory device with bandwidth-improvement techniques , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Onur Mutlu,et al.  Improving memory Bank-Level Parallelism in the presence of prefetching , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[10]  M. Wordeman,et al.  An 800-MHz embedded DRAM with a concurrent refresh mode , 2005, IEEE Journal of Solid-State Circuits.