Convergence analysis of the Chebyshev-Legendre spectral method for a class of Fredholm fractional integro-differential equations

Abstract In this paper, we propose and analyze a spectral Chebyshev–Legendre approximation for fractional order integro-differential equations of Fredholm type. The fractional derivative is described in the Caputo sense. Our proposed method is illustrated by considering some examples whose exact solutions are available. We prove that the error of the approximate solution decays exponentially in L 2 -norm.

[1]  David Gottlieb,et al.  The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points , 1994 .

[2]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[3]  Nasser Hassan Sweilam,et al.  A CHEBYSHEV PSEUDO-SPECTRAL METHOD FOR SOLVING FRACTIONAL-ORDER INTEGRO-DIFFERENTIAL EQUATIONS , 2010, The ANZIAM Journal.

[4]  Jie Shen,et al.  Nonlinear Galerkin method using Chebyshev and Legendre polynomials I.: the one-dimensional case , 1995 .

[5]  S. Shafiei,et al.  A Quadrature Tau Method For Solving Fractional Integro-differential Equations In The Caputo Sense , 2015 .

[6]  Petter E. Bjørstad,et al.  Timely Communication: Efficient Algorithms for Solving a Fourth-Order Equation with the Spectral-Galerkin Method , 1997, SIAM J. Sci. Comput..

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  A. Aminataei,et al.  Operational Tau approximation for a general class of fractional integro-differential equations , 2011 .

[9]  S. S. Ezz-Eldien,et al.  On solving fractional logistic population models with applications , 2018 .

[10]  I. Ozkol,et al.  Solution of fractional integro-differential equations by using fractional differential transform method , 2009 .

[11]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[12]  Eid H. Doha,et al.  Fast and precise spectral method for solving pantograph type Volterra integro-differential equations , 2018, Numerical Algorithms.

[13]  Gennady N. Chuev,et al.  A CAS Wavelet Method for Solving Nonlinear Fredholm Integro- Differential Equations of Fractional Order , 2011 .

[14]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[15]  Wei Zhang,et al.  Legendre wavelets method for solving fractional integro-differential equations , 2015, Int. J. Comput. Math..

[16]  E. A. Rawashdeh,et al.  Numerical solution of fractional integro-differential equations by collocation method , 2006, Appl. Math. Comput..

[17]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[18]  Ali H. Bhrawy,et al.  A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals , 2012 .

[19]  Ahmed M. A. El-Sayed,et al.  On the functional integral equations of mixed type and integro-differential equations of fractional orders , 2004, Appl. Math. Comput..

[20]  Ali H. Bhrawy,et al.  A quadrature tau method for fractional differential equations with variable coefficients , 2011, Appl. Math. Lett..

[21]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[22]  H. Saeedi,et al.  He's Homotopy Perturbation Method for Nonlinear Ferdholm Integro-Differential Equations Of Fractional Order , 2012 .

[23]  Y. Ordokhani,et al.  The approximate solution of nonlinear Fredholm-Volterra integro-differential equations of fractional order , 2018 .

[24]  Qibin Fan,et al.  Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet , 2012 .

[25]  Yasir Nawaz,et al.  Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations , 2011, Comput. Math. Appl..

[26]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[27]  R. Kanwal Linear Integral Equations , 1925, Nature.

[28]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[29]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[30]  Wei Jiang,et al.  Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method , 2015 .

[31]  Jie Shen,et al.  E-cient Chebyshev-Legendre Galerkin Methods for Elliptic Problems , 1996 .

[32]  S. Ahmed,et al.  Generalized Taylor MatrixMethod for Solving LinearIntegro-Fractional Differential Equations of Volterra Type , 2011 .

[33]  Aytac Arikoglu,et al.  Solution of fractional differential equations by using differential transform method , 2007 .

[34]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[35]  Samer S. Ezz-Eldien On solving systems of multi-pantograph equations via spectral tau method , 2018, Appl. Math. Comput..

[36]  Eid H. Doha,et al.  A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order , 2011, Comput. Math. Appl..

[37]  Muhammad Aslam Noor,et al.  Numerical methods for fourth-order fractional integro-differential equations , 2006, Appl. Math. Comput..