Submission PDF Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago

Evidence for macroscopic life in the Paleoproterozoic Era comes from 1.8 billion-year-old (Ga) compression fossils [ Han TM, Run-negar (1992), [ Bengtson S et. al. (2007), Paleobiology 33(3):351-381], and large colonial organisms exhibiting signs of coordinated growth from the 2.1 Ga Francevillian Series, Gabon. Here we report on pyritized string-shaped structures from the Francevillian Basin. Combined microscopic, microtomographic, geochemical, and sedimentologic analyses provide evidence for biogenicity, and syngenicity and sedimentological ichnological analyses. R.M. performed microtomographic analyses. isotope

[1]  Mark N. Puttick,et al.  Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origins , 2018, Nature Ecology & Evolution.

[2]  Martin A. Nowak,et al.  The timetable of evolution , 2017, Science Advances.

[3]  S. Bengtson,et al.  The origin of animals: Can molecular clocks and the fossil record be reconciled? , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[4]  L. Buatois,et al.  Ediacaran Ecosystems and the Dawn of Animals , 2016 .

[5]  J. Perron,et al.  Microbial Origin of Early Animal Trace Fossils , 2016 .

[6]  A. J. Kaufman,et al.  Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction , 2014, Science.

[7]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[8]  J. Perron,et al.  Microbial shaping of sedimentary wrinkle structures , 2014 .

[9]  Sylvain Bernard,et al.  The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity , 2014, PloS one.

[10]  Steven M Bates,et al.  Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir , 2014 .

[11]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[12]  D. Canfield,et al.  Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere , 2013, Proceedings of the National Academy of Sciences.

[13]  Bettina E. Schirrmeister,et al.  Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event , 2013, Proceedings of the National Academy of Sciences.

[14]  A. Bekker,et al.  Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event , 2012, Proceedings of the National Academy of Sciences.

[15]  A. Seilacher,et al.  Possible evolution of mobile animals in association with microbial mats , 2011 .

[16]  L. Löwemark,et al.  Pyritic and baritic burrows and microbial filaments in postglacial lacustrine clays in the northern Baltic Sea , 2010, Journal of the Geological Society.

[17]  Donald E. Canfield,et al.  Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago , 2010, Nature.

[18]  Randy Wayne,et al.  The Social Amoebae: The Biology of Cellular Slime Molds , 2010 .

[19]  D. Canfield,et al.  Animal evolution, bioturbation, and the sulfate concentration of the oceans , 2009, Proceedings of the National Academy of Sciences.

[20]  Daniel J. Condon,et al.  Fossil steroids record the appearance of Demospongiae during the Cryogenian period , 2009, Nature.

[21]  D. Canfield,et al.  Sulfur isotope insights into microbial sulfate reduction: When microbes meet models , 2007 .

[22]  S. Bengtson,et al.  The Paleoproterozoic megascopic Stirling biota , 2007 .

[23]  J. Bonner Migration in Dictyostelium polycephalum , 2006, Mycologia.

[24]  S. Jensen,et al.  A Critical Look at the Ediacaran Trace Fossil Record , 2006 .

[25]  A. Seilacher,et al.  Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift , 2005 .

[26]  R. O'Mara,et al.  Aerial migration of the Dictyostelium slug , 2005, Development, growth & differentiation.

[27]  F. Gauthier-Lafaye,et al.  U-Pb geochronolog and geochemistry of zircon from the Franceville series at Bidoudouma, Gabon , 2005 .

[28]  J. Bonner,et al.  Behavior of cellular slime molds in the soil. , 2005, Mycologia.

[29]  F. Gauthier-Lafaye,et al.  Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere , 2003 .

[30]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[31]  J. Schieber The Role of an Organic Slime Matrix in the Formation of Pyritized Burrow Trails and Pyrite Concretions , 2002 .

[32]  D. Canfield Isotope fractionation by natural populations of sulfate-reducing bacteria , 2001 .

[33]  R. Kessin Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity , 2001 .

[34]  Victor A. Gallardo,et al.  Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles , 1999 .

[35]  H. G. Wallraff,et al.  Migration and bidirectional phototaxis in Dictyostelium discoideum slugs lacking the actin cross-linking 120 kDa gelation factor. , 1997, The Journal of experimental biology.

[36]  M. Henk,et al.  Beggiatoa in microbial mats at hydrocarbon vents in the Gulf of Mexico and Warm Mineral Springs, Florida , 1994 .

[37]  N. Clauer,et al.  Sm-Nd isotopic dating of Proterozoic clay material: An example from the Francevillian sedimentary series, Gabon , 1992 .

[38]  T. Vorren,et al.  Pyritization of tubes and burrows from Late Pleistocene continental shelf sediments off North Norway , 1984 .