Finding New Targets for the Treatment of Heart Failure: Endoplasmic Reticulum Stress and Autophagy

[1]  Wei Zhou,et al.  Gentianella acuta improves TAC-induced cardiac remodelling by regulating the Notch and PI3K/Akt/FOXO1/3 pathways. , 2022, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  J. Pratt,et al.  Glycan degradation promotes macroautophagy , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Garnier,et al.  Ferulic Acid, Pterostilbene, and Tyrosol Protect the Heart from ER-Stress-Induced Injury by Activating SIRT1-Dependent Deacetylation of eIF2α , 2022, International journal of molecular sciences.

[4]  Jianliang Jin,et al.  Bmi‐1‐RING1B prevents GATA4‐dependent senescence‐associated pathological cardiac hypertrophy by promoting autophagic degradation of GATA4 , 2022, Clinical and translational medicine.

[5]  Alexander J. Winkle,et al.  Emerging therapeutic targets for cardiac hypertrophy , 2022, Expert opinion on therapeutic targets.

[6]  Qiao Chen,et al.  Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress , 2021, Acta Pharmacologica Sinica.

[7]  D. Klionsky,et al.  A Perspective on the Role of Autophagy in Cancer. , 2021, Biochimica et biophysica acta. Molecular basis of disease.

[8]  J. McMurray,et al.  2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. , 2021, European heart journal.

[9]  Mohammad Omar Faruk,et al.  Selective autophagy , 2021, Cancer science.

[10]  F. Bosco,et al.  The Effects of Bergamot Polyphenolic Fraction, Cynara cardunculus, and Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity , 2021, Nutrients.

[11]  M. Czubryt,et al.  Cardiac fibrosis: Pathobiology and therapeutic targets. , 2021, Cellular signalling.

[12]  N. Dhalla,et al.  Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure , 2021, Antioxidants.

[13]  Ji Zhang,et al.  Integrated signaling system under endoplasmic reticulum stress in eukaryotic microorganisms , 2021, Applied Microbiology and Biotechnology.

[14]  D. Klionsky,et al.  The role of autophagy in cardiovascular pathology. , 2021, Cardiovascular research.

[15]  Kristin M. French,et al.  Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction , 2021, Nature Communications.

[16]  Jun Ren,et al.  Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases , 2021, Nature Reviews Cardiology.

[17]  Jinbao Liu,et al.  Selective autophagy of intracellular organelles: recent research advances , 2021, Theranostics.

[18]  T. Itoi,et al.  Autophagy and Autophagy-Related Diseases: A Review , 2020, International journal of molecular sciences.

[19]  Chung‐Han Ho,et al.  Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients , 2020, Archives of toxicology.

[20]  Suowen Xu,et al.  Autophagy and cardiac diseases: Therapeutic potential of natural products , 2020, Medicinal research reviews.

[21]  Tong Zhang,et al.  Endoplasmic reticulum stress and autophagy in HIV-1-associated neurocognitive disorders , 2020, Journal of NeuroVirology.

[22]  F. Rutten,et al.  Epidemiology of heart failure , 2020, European journal of heart failure.

[23]  Yafeng Wang,et al.  Selective Inhibition of PKCβ2 Restores Ischemic Postconditioning-Mediated Cardioprotection by Modulating Autophagy in Diabetic Rats , 2020, Journal of diabetes research.

[24]  C. Lemaire,et al.  SIRT1 Protects the Heart from ER Stress-Induced Injury by Promoting eEF2K/eEF2-Dependent Autophagy , 2020, Cells.

[25]  C. Koumenis,et al.  Regulation of autophagy by canonical and non-canonical ER stress responses. , 2019, Seminars in cancer biology.

[26]  Yongtao Zhang,et al.  Protective effect of hyperoside on heart failure rats via attenuating myocardial apoptosis and inducing autophagy , 2019, Bioscience, biotechnology, and biochemistry.

[27]  Bei Liu,et al.  Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. , 2019, Biochemical and biophysical research communications.

[28]  Zhiyong Zhou,et al.  Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling. , 2019, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[29]  Hui-Hua Li,et al.  Gallic Acid Suppresses Cardiac Hypertrophic Remodeling and Heart Failure , 2018, Molecular nutrition & food research.

[30]  D. Langosch,et al.  The Metastable XBP1u Transmembrane Domain Defines Determinants for Intramembrane Proteolysis by Signal Peptide Peptidase. , 2019, Cell reports.

[31]  Ping Li,et al.  Ginsenoside Rg1 Prevents Doxorubicin-Induced Cardiotoxicity through the Inhibition of Autophagy and Endoplasmic Reticulum Stress in Mice , 2018, International journal of molecular sciences.

[32]  E. Chevet,et al.  Alterations of EDEM1 functions enhance ATF6 pro‐survival signaling , 2018, The FEBS journal.

[33]  G. Santulli Cardioprotective effects of autophagy: Eat your heart out, heart failure! , 2018, Science Translational Medicine.

[34]  Zhenzhong Wang,et al.  Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets , 2018, British journal of pharmacology.

[35]  T. Gillette,et al.  The unfolded protein response in ischemic heart disease. , 2018, Journal of molecular and cellular cardiology.

[36]  R. Ghosh,et al.  Macroautophagy and Chaperone-Mediated Autophagy in Heart Failure: The Known and the Unknown , 2018, Oxidative medicine and cellular longevity.

[37]  Marjan Ghorbani,et al.  Fabrication of all-trans-retinoic acid-loaded biocompatible precirol: A strategy for escaping dose-dependent side effects of doxorubicin. , 2017, Colloids and surfaces. B, Biointerfaces.

[38]  Yin Wang,et al.  TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction , 2017, Journal of cellular and molecular medicine.

[39]  Qiuyun Chen,et al.  A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure , 2017, Nature Communications.

[40]  Abdelrahman Ibrahim Abushouk,et al.  Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[41]  C. Zhang,et al.  Role of Endoplasmic Reticulum Stress, Autophagy, and Inflammation in Cardiovascular Disease , 2017, Front. Cardiovasc. Med..

[42]  Gangming Zhang,et al.  The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes. , 2016, Molecular cell.

[43]  J. Diehl,et al.  The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. , 2016, Current molecular medicine.

[44]  S. Martens,et al.  Mechanisms of Selective Autophagy , 2016, Journal of molecular biology.

[45]  A. Cuervo,et al.  Proteostasis and aging , 2015, Nature Network Boston.

[46]  Lorenzo Galluzzi,et al.  Organelle-Specific Initiation of Autophagy. , 2015, Molecular cell.

[47]  Z. Ali,et al.  Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy. , 2015, American journal of physiology. Heart and circulatory physiology.

[48]  Hong Jiang,et al.  ER stress-induced apoptosis: a novel therapeutic target in heart failure. , 2014, International journal of cardiology.

[49]  M. Busslinger,et al.  The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells , 2014, The EMBO journal.

[50]  E. Roselló-Lletí,et al.  Endoplasmic Reticulum Stress Induces Different Molecular Structural Alterations in Human Dilated and Ischemic Cardiomyopathy , 2014, PloS one.

[51]  Tohru Natsume,et al.  The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17 , 2014, Molecular biology of the cell.

[52]  G. Juhász,et al.  Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila , 2014, Molecular biology of the cell.

[53]  D. Klionsky,et al.  Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins , 2014, Nature Structural &Molecular Biology.

[54]  A. Shah,et al.  Autophagy-mediated degradation is necessary for regression of cardiac hypertrophy during ventricular unloading. , 2013, Biochemical and biophysical research communications.

[55]  T. P. Neufeld,et al.  ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase , 2013, Nature Cell Biology.

[56]  J. Vicencio,et al.  Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol. , 2012, Experimental and molecular pathology.

[57]  Q. Duan,et al.  β-AR Blockers Suppresses ER Stress in Cardiac Hypertrophy and Heart Failure , 2011, PloS one.

[58]  D. Rubinsztein,et al.  Regulation of mammalian autophagy in physiology and pathophysiology. , 2010, Physiological reviews.

[59]  I. Komuro,et al.  X-box binding protein 1 regulates brain natriuretic peptide through a novel AP1/CRE-like element in cardiomyocytes. , 2010, Journal of Molecular and Cellular Cardiology.

[60]  Y Kouroku,et al.  ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation , 2007, Cell Death and Differentiation.

[61]  C. Hawes,et al.  The endoplasmic reticulum: a dynamic and well-connected organelle. , 2015, Journal of integrative plant biology.

[62]  M. Maurer,et al.  Pathophysiology of Heart Failure , 2007 .