Aggregating fuzzy implications

The aim of this work is to study the I"A fuzzy implication obtained by composition of an aggregation function A and a family I of fuzzy implications. Thus, it discusses under which conditions such functions preserve the main properties of fuzzy implications. In addition, by aggregating conjugate fuzzy implications it is shown that an I"A fuzzy implication can be preserved by action of an order automorphism. Finally, we introduce the family of I"A fuzzy implications obtained by taking the extended classes of (S,N)-implications which are given by t-subconorms and of R-implications underlying left continuous t-subnorms. Their dual construction is also considered.

[1]  Isabelle Bloch,et al.  Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology , 2011, Inf. Sci..

[2]  Yao Ouyang,et al.  On fuzzy implications determined by aggregation operators , 2012, Inf. Sci..

[3]  Hoel Le Capitaine,et al.  Towards a Unified Logical Framework of Fuzzy Implications to Compare Fuzzy Sets , 2009, IFSA/EUSFLAT Conf..

[4]  Regivan H. N. Santiago,et al.  Canonical representation of the Yager’s classes of fuzzy implications , 2013, Computational and Applied Mathematics.

[5]  Radko Mesiar,et al.  Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes , 2011, Inf. Sci..

[6]  József Dombi,et al.  On a certain class of aggregative operators , 2013, Inf. Sci..

[7]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[8]  Ronald R. Yager Exponential smoothing with credibility weighted observations , 2013, Inf. Sci..

[9]  Benjamín R. C. Bedregal,et al.  Interval-valued intuitionistic fuzzy implications - Construction, properties and representability , 2013, Inf. Sci..

[10]  Imre J. Rudas,et al.  An extension of the migrative property for triangular norms , 2011, Fuzzy Sets Syst..

[11]  Witold Pedrycz,et al.  An approach to measure the robustness of fuzzy reasoning: Research Articles , 2005 .

[12]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[13]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[14]  Benjamín R. C. Bedregal,et al.  Robustness of N-Dual Fuzzy Connectives , 2011, Eurofuse.

[15]  Radko Mesiar,et al.  On special fuzzy implications , 2009, Fuzzy Sets Syst..

[16]  Yun Shi,et al.  On the characterizations of fuzzy implications satisfying I(x, y)=I(x, I(x, y)) , 2007, Inf. Sci..

[17]  Humberto Bustince,et al.  Automorphisms, negations and implication operators , 2003, Fuzzy Sets Syst..

[18]  J. Fodor On fuzzy implication operators , 1991 .

[19]  Humberto Bustince,et al.  Aggregation functions and contradictory information , 2012, Fuzzy Sets Syst..

[20]  Etienne E. Kerre,et al.  Implicators based on binary aggregation operators in interval-valued fuzzy set theory , 2005, Fuzzy Sets Syst..

[21]  Vicenç Torra Aggregation operators and models , 2005, Fuzzy Sets Syst..

[22]  Humberto Bustince,et al.  New results on overlap and grouping functions , 2013, Inf. Sci..

[23]  Etienne E. Kerre,et al.  Aggregation Operators in Interval-valued Fuzzy and Atanassov's Intuitionistic Fuzzy Set Theory , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[24]  Witold Pedrycz,et al.  An approach to measure the robustness of fuzzy reasoning , 2005, Int. J. Intell. Syst..

[25]  Zun-Quan Xia,et al.  Intuitionistic fuzzy implication operators: Expressions and properties , 2006 .

[26]  Radko Mesiar,et al.  R-implications and the exchange principle: The case of border continuous t-norms , 2013, Fuzzy Sets Syst..

[27]  Ana Pradera A Review of the Relationships between Aggregation, Implication and Negation Functions , 2013, AGOP.

[28]  E. Trillas Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .

[29]  H. Bustince,et al.  Migrativity of aggregation functions , 2009, Fuzzy Sets Syst..

[30]  Humberto Bustince,et al.  Aggregation for Atanassov’s Intuitionistic and Interval Valued Fuzzy Sets: The Median Operator , 2012, IEEE Transactions on Fuzzy Systems.

[31]  Shu-Cherng Fang,et al.  A survey on fuzzy relational equations, part I: classification and solvability , 2009, Fuzzy Optim. Decis. Mak..

[32]  Leonid Kitainik,et al.  Fuzzy Decision Procedures with Binary Relations , 1993, Theory and Decision Library.

[33]  Benjamín R. C. Bedregal,et al.  Interval additive generators of interval t-norms and interval t-conorms , 2011, Inf. Sci..

[34]  J. Fodor Contrapositive symmetry of fuzzy implications , 1995 .

[35]  Benjamín R. C. Bedregal,et al.  Interval-valued fuzzy coimplications and related dual interval-valued conjugate functions , 2014, J. Comput. Syst. Sci..

[36]  Dana Hlinená,et al.  Generated fuzzy implicators and fuzzy preference structures , 2012, Kybernetika.

[37]  Benjamín R. C. Bedregal,et al.  Xor-Implications and E-Implications: Classes of Fuzzy Implications Based on Fuzzy Xor , 2009, LSFA.

[38]  Radko Mesiar,et al.  2-Increasing binary aggregation operators , 2007, Inf. Sci..

[39]  Joan Torrens,et al.  Continuous R-implications generated from representable aggregation functions , 2010, Fuzzy Sets Syst..

[40]  Benjamín R. C. Bedregal,et al.  On interval fuzzy negations , 2010, Fuzzy Sets Syst..

[41]  Michal Baczynski,et al.  (S, N)- and R-implications: A state-of-the-art survey , 2008, Fuzzy Sets Syst..

[42]  Joan Torrens,et al.  Residual implications on the set of discrete fuzzy numbers , 2013, Inf. Sci..

[43]  Joan Torrens,et al.  Residual implications and co-implications from idempotent uninorms , 2004, Kybernetika.

[44]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[45]  Humberto Bustince,et al.  The median and its extensions , 2011, Fuzzy Sets Syst..

[46]  Anna Król,et al.  Dependencies between fuzzy conjunctions and implications , 2011, EUSFLAT Conf..

[47]  Bernard De Baets Coimplicators, the forgotten connectives. , 1997 .

[48]  Gleb Beliakov,et al.  Stability of weighted penalty-based aggregation functions , 2013, Fuzzy Sets Syst..

[49]  Gyula Maksa,et al.  Quasisums and generalized associativity , 2005 .

[50]  Radko Mesiar,et al.  Conic aggregation functions , 2011, Fuzzy Sets Syst..

[51]  Etienne E. Kerre,et al.  Smets-magrez Axioms for R-implicators in Interval-valued and Intuitionistic Fuzzy Set Theory , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[52]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[53]  Joan Torrens,et al.  QL-implications versus D-implications , 2006, Kybernetika.

[54]  Humberto Bustince,et al.  A class of aggregation functions encompassing two-dimensional OWA operators , 2010, Inf. Sci..