A Discontinuous Galerkin Method with Penalty for One-Dimensional Nonlocal Diffusion Problems

There have been many theoretical studies and numerical investigations of nonlocal diffusion (ND) problems in recent years. In this paper, we propose and analyze a new discontinuous Galerkin method for solving one-dimensional steady-state and time-dependent ND problems, based on a formulation that directly penalizes the jumps across the element interfaces in the nonlocal sense. We show that the proposed discontinuous Galerkin scheme is stable and convergent. Moreover, the local limit of such DG scheme recovers classical DG scheme for the corresponding local diffusion problem, which is a distinct feature of the new formulation and assures the asymptotic compatibility of the discretization. Numerical tests are also presented to demonstrate the effectiveness and the robustness of the proposed method.

[1]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[2]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[3]  Jiang Yang,et al.  Asymptotically Compatible Fourier Spectral Approximations of Nonlocal Allen-Cahn Equations , 2016, SIAM J. Numer. Anal..

[4]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[5]  Bo Ren,et al.  A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis , 2017 .

[6]  Qiang Du,et al.  Nonlocal Modeling, Analysis, and Computation , 2019 .

[7]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[8]  Hailiang Liu,et al.  The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems , 2008, SIAM J. Numer. Anal..

[9]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[10]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[11]  Qiang Du,et al.  Mathematics of Smoothed Particle Hydrodynamics, Part I: a Nonlocal Stokes Equation , 2018, 1805.08261.

[12]  Qiang Du,et al.  Nonconforming Discontinuous Galerkin Methods for Nonlocal Variational Problems , 2015, SIAM J. Numer. Anal..

[13]  Xiao Li,et al.  Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation , 2018, J. Comput. Phys..

[14]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[15]  Stewart Andrew Silling,et al.  Crack nucleation in a peridynamic solid , 2010 .

[16]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[17]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[18]  Xiaochuan Tian,et al.  Mathematics of Smoothed Particle Hydrodynamics: A Study via Nonlocal Stokes Equations , 2018, Found. Comput. Math..

[19]  Qiang Du,et al.  Analysis of Fully Discrete Approximations for Dissipative Systems and Application to Time-Dependent Nonlocal Diffusion Problems , 2018, J. Sci. Comput..

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[21]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[22]  Qiang Du,et al.  The bond-based peridynamic system with Dirichlet-type volume constraint , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  Mikhail Belkin,et al.  On Learning with Integral Operators , 2010, J. Mach. Learn. Res..

[24]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[25]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[26]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[27]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[28]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[29]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[30]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[31]  Qiang Du,et al.  A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems , 2017, Math. Comput..

[32]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[33]  Wei Liu,et al.  Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling , 2018, NeurIPS.

[34]  Qiang Du,et al.  Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations , 2013, SIAM J. Numer. Anal..

[35]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .