Task-induced brain state manipulation improves prediction of individual traits

[1]  Paola Galdi,et al.  Predicting personality traits from resting-state fMRI , 2017, bioRxiv.

[2]  Emiliano Santarnecchi,et al.  Network connectivity correlates of variability in fluid intelligence performance , 2017 .

[3]  Dustin Scheinost,et al.  Influences on the Test–Retest Reliability of Functional Connectivity MRI and its Relationship with Behavioral Utility , 2017, Cerebral cortex.

[4]  Amin Karbasi,et al.  A Submodular Approach to Create Individualized Parcellations of the Human Brain , 2017, MICCAI.

[5]  Andrew Zalesky,et al.  Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning , 2017, The Journal of Neuroscience.

[6]  T. Yarkoni,et al.  Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning , 2017, Perspectives on psychological science : a journal of the Association for Psychological Science.

[7]  Kevin Murphy,et al.  Towards a consensus regarding global signal regression for resting state functional connectivity MRI , 2017, NeuroImage.

[8]  Tor D. Wager,et al.  Empathic Care and Distress: Predictive Brain Markers and Dissociable Brain Systems , 2017, Neuron.

[9]  R. T. Constable,et al.  Characterizing Attention with Predictive Network Models , 2017, Trends in Cognitive Sciences.

[10]  Dustin Scheinost,et al.  Can brain state be manipulated to emphasize individual differences in functional connectivity? , 2017, NeuroImage.

[11]  Dustin Scheinost,et al.  Using connectome-based predictive modeling to predict individual behavior from brain connectivity , 2017, Nature Protocols.

[12]  Luke J. Chang,et al.  Building better biomarkers: brain models in translational neuroimaging , 2017, Nature Neuroscience.

[13]  Kai Li,et al.  Computational approaches to fMRI analysis , 2017, Nature Neuroscience.

[14]  André Zugman,et al.  Commentary: Functional connectome fingerprint: identifying individuals using patterns of brain connectivity , 2017, Front. Hum. Neurosci..

[15]  Andrew T. Drysdale,et al.  Resting-state connectivity biomarkers define neurophysiological subtypes of depression , 2016, Nature Medicine.

[16]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[17]  R. Adolphs,et al.  Building a Science of Individual Differences from fMRI , 2016, Trends in Cognitive Sciences.

[18]  Yikai Wang,et al.  An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation , 2016, Front. Neurosci..

[19]  L. Shah,et al.  Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state , 2016, Brain and behavior.

[20]  Robert Stickgold,et al.  Thinking About a Task Is Associated with Increased Connectivity in Regions Activated by Task Performance , 2016, Brain Connect..

[21]  Mark A. Elliott,et al.  The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth , 2016, NeuroImage.

[22]  M. Chun,et al.  A neuromarker of sustained attention from whole-brain functional connectivity , 2015, Nature Neuroscience.

[23]  Stephen M. Smith,et al.  Multi-level block permutation , 2015, NeuroImage.

[24]  Linda Geerligs,et al.  State and Trait Components of Functional Connectivity: Individual Differences Vary with Mental State , 2015, The Journal of Neuroscience.

[25]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[26]  Efstathios D. Gennatas,et al.  Linked Sex Differences in Cognition and Functional Connectivity in Youth. , 2015, Cerebral cortex.

[27]  Wei Gao,et al.  Task‐related modulation of functional connectivity variability and its behavioral correlations , 2015, Human brain mapping.

[28]  Danielle S. Bassett,et al.  Cognitive Network Neuroscience , 2015, Journal of Cognitive Neuroscience.

[29]  Dustin Scheinost,et al.  Sex differences in normal age trajectories of functional brain networks , 2015, Human brain mapping.

[30]  Graeme D. Jackson,et al.  Resting state functional connectivity changes induced by prior brain state are not network specific , 2015, NeuroImage.

[31]  Satrajit S. Ghosh,et al.  Prediction as a Humanitarian and Pragmatic Contribution from Human Cognitive Neuroscience , 2015, Neuron.

[32]  Steven P Reise,et al.  Psychometric properties of the Penn Computerized Neurocognitive Battery. , 2015, Neuropsychology.

[33]  Jeffrey N. Chiang,et al.  Optimized Brain Extraction for Pathological Brains (optiBET) , 2014, PloS one.

[34]  Jonathan D. Power,et al.  Studying Brain Organization via Spontaneous fMRI Signal , 2014, Neuron.

[35]  B T Thomas Yeo,et al.  Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  Dimitri Van De Ville,et al.  Disentangling dynamic networks: Separated and joint expressions of functional connectivity patterns in time , 2014, Human brain mapping.

[37]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[38]  R. Whelan,et al.  When Optimism Hurts: Inflated Predictions in Psychiatric Neuroimaging , 2014, Biological Psychiatry.

[39]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[40]  Christos Davatzikos,et al.  Neuroimaging of the Philadelphia Neurodevelopmental Cohort , 2014, NeuroImage.

[41]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[42]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[43]  Beau Dabbs,et al.  Summary and discussion of : “ Controlling the False Discovery Rate : A Practical and Powerful Approach to Multiple Testing , 2014 .

[44]  Jarrod A. Lewis-Peacock,et al.  Multi-Voxel Pattern Analysis of fMRI Data , 2014 .

[45]  Jordan Grafman,et al.  Architecture of fluid intelligence and working memory revealed by lesion mapping , 2014, Brain Structure and Function.

[46]  Mary E. Meyerand,et al.  The effect of scan length on the reliability of resting-state fMRI connectivity estimates , 2013, NeuroImage.

[47]  Xenophon Papademetris,et al.  Groupwise whole-brain parcellation from resting-state fMRI data for network node identification , 2013, NeuroImage.

[48]  N. Turk-Browne Functional Interactions as Big Data in the Human Brain , 2013, Science.

[49]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[50]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[51]  R. Cameron Craddock,et al.  Clinical applications of the functional connectome , 2013, NeuroImage.

[52]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[53]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[54]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[55]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[56]  Jonathan D. Power,et al.  Multi-task connectivity reveals flexible hubs for adaptive task control , 2013, Nature Neuroscience.

[57]  Fenna M. Krienen,et al.  Opportunities and limitations of intrinsic functional connectivity MRI , 2013, Nature Neuroscience.

[58]  C. Kelly,et al.  The extrinsic and intrinsic functional architectures of the human brain are not equivalent. , 2013, Cerebral cortex.

[59]  R Cameron Craddock,et al.  A whole brain fMRI atlas generated via spatially constrained spectral clustering , 2012, Human brain mapping.

[60]  Gian Luca Romani,et al.  Common and unique neuro-functional basis of induction, visualization, and spatial relationships as cognitive components of fluid intelligence , 2012, NeuroImage.

[61]  R. Gur,et al.  Development of Abbreviated Nine-Item Forms of the Raven’s Standard Progressive Matrices Test , 2012, Assessment.

[62]  Chad E. Forbes,et al.  An integrative architecture for general intelligence and executive function revealed by lesion mapping. , 2012, Brain : a journal of neurology.

[63]  M. Greicius,et al.  Decoding subject-driven cognitive states with whole-brain connectivity patterns. , 2012, Cerebral cortex.

[64]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[65]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[66]  Dustin Scheinost,et al.  Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms , 2011, Neuroinformatics.

[67]  R. Haier,et al.  Human intelligence and brain networks , 2010, Dialogues in clinical neuroscience.

[68]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[69]  R. Gur,et al.  A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation , 2010, Journal of Neuroscience Methods.

[70]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[71]  M. P. van den Heuvel,et al.  Exploring the brain network: a review on resting-state fMRI functional connectivity. , 2010, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology.

[72]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[73]  H. Nusbaum,et al.  Task-dependent organization of brain regions active during rest , 2009, Proceedings of the National Academy of Sciences.

[74]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[75]  Rex E. Jung,et al.  Gray matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model , 2009 .

[76]  Noah A. Shamosh,et al.  Multiple Bases of Human Intelligence Revealed by Cortical Thickness and Neural Activation , 2008, The Journal of Neuroscience.

[77]  R. Haier,et al.  The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence , 2007, Behavioral and Brain Sciences.

[78]  Vincent Schmithorst,et al.  Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis , 2007, NeuroImage.

[79]  Abraham Z. Snyder,et al.  A method for using blocked and event-related fMRI data to study “resting state” functional connectivity , 2007, NeuroImage.

[80]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[81]  A. Hariri,et al.  Preference for Immediate over Delayed Rewards Is Associated with Magnitude of Ventral Striatal Activity , 2006, The Journal of Neuroscience.

[82]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[83]  Habib Benali,et al.  Partial correlation for functional brain interactivity investigation in functional MRI , 2006, NeuroImage.

[84]  Rex E. Jung,et al.  Distributed brain sites for the g-factor of intelligence , 2006, NeuroImage.

[85]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[86]  Michelle Hampson,et al.  Connectivity–behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability , 2006, NeuroImage.

[87]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[88]  Adam Gazzaley,et al.  Measuring functional connectivity during distinct stages of a cognitive task , 2004, NeuroImage.

[89]  Rex E. Jung,et al.  Structural brain variation and general intelligence , 2004, NeuroImage.

[90]  C. Chabris,et al.  Neural mechanisms of general fluid intelligence , 2003, Nature Neuroscience.

[91]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  L. Nystrom,et al.  Tracking the hemodynamic responses to reward and punishment in the striatum. , 2000, Journal of neurophysiology.

[93]  Newell,et al.  A neural basis for general intelligence , 2000, American journal of ophthalmology.

[94]  J. Lurito,et al.  Correlations in Low-Frequency BOLD Fluctuations Reflect Cortico-Cortical Connections , 2000, NeuroImage.

[95]  M. D’Esposito,et al.  The Inferential Impact of Global Signal Covariates in Functional Neuroimaging Analyses , 1998, NeuroImage.

[96]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[97]  M. Lowe,et al.  Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations , 1998, NeuroImage.

[98]  J. Desmond,et al.  Neural Substrates of Fluid Reasoning: An fMRI Study of Neocortical Activation during Performance of the Raven's Progressive Matrices Test , 1997, Cognitive Psychology.

[99]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[100]  J. H. Steiger Tests for comparing elements of a correlation matrix. , 1980 .