Spatially regularized compressed sensing of diffusion MRI data

The present paper introduces a method for substantial reduction of the number of diffusion encoding gradients required for reliable reconstruction of HARDI signals. The method exploits the theory of compressed sensing (CS), which establishes conditions on which a signal of interest can be recovered from its under-sampled measurements, provided that the signal admits a sparse representation in the domain of a linear transform. In the case at hand, the latter is defined to be spherical ridgelet transformation, which excels in sparsifying HARDI signals. What makes the resulting reconstruction procedure even more accurate is a combination of the sparsity constraints in the diffusion domain with additional constraints imposed on the estimated diffusion field in the spatial domain. Accordingly, the present paper describes a novel way to combine the diffusion- and spatial-domain constraints to achieve a maximal reduction in the number of diffusion measurements, while sacrificing little in terms of reconstruction accuracy. Finally, details are provided on a particularly efficient numerical scheme which can be used to solve the aforementioned reconstruction problem by means of standard and readily available estimation tools. The paper is concluded with experimental results which support the practical value of the proposed reconstruction methodology.

[1]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[2]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[3]  R. Franke,et al.  A Survey on Spherical Spline Approximation , 1995 .

[4]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[5]  Jerry L. Prince,et al.  Resolution of crossing fibers with constrained compressed sensing using traditional diffusion tensor MRI , 2010, Medical Imaging.

[6]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[7]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[8]  Michael Elad,et al.  A wide-angle view at iterated shrinkage algorithms , 2007, SPIE Optical Engineering + Applications.

[9]  Jerry L. Prince,et al.  In the Pursuit of Intra-Voxel Fiber Orientations: Comparison of Compressed Sensing DTI and Q-Ball MRI , 2010 .

[10]  P. Basser,et al.  Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI , 2004, Magnetic resonance in medicine.

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[13]  R. Deriche,et al.  Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications , 2006, Magnetic resonance in medicine.

[14]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[15]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[16]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[17]  V. Wedeen,et al.  Fiber crossing in human brain depicted with diffusion tensor MR imaging. , 2000, Radiology.

[18]  Martha Elizabeth Shenton,et al.  Neural Tractography Using an Unscented Kalman Filter , 2009, IPMI.

[19]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[20]  Martha Elizabeth Shenton,et al.  Directional functions for orientation distribution estimation , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[21]  Yin Zhang,et al.  A Fast Algorithm for Image Deblurring with Total Variation Regularization , 2007 .

[22]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[23]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[24]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[25]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[26]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[27]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[28]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[29]  S. Mallat A wavelet tour of signal processing , 1998 .

[30]  Wen Qin,et al.  Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. , 2005, European journal of radiology.

[31]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[32]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[33]  Mark J. Lowe,et al.  An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI , 2007, NeuroImage.

[34]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[35]  Yaakov Tsaig,et al.  Extensions of compressed sensing , 2006, Signal Process..

[36]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[37]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[38]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[39]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[40]  Feng Huang,et al.  k‐t GRAPPA: A k‐space implementation for dynamic MRI with high reduction factor , 2005, Magnetic resonance in medicine.

[41]  A. Alexander,et al.  Diffusion tensor imaging of the brain , 2007, Neurotherapeutics.

[42]  정홍,et al.  Improved k-t BLAST and k-t SENSE using FOCUSS , 2007 .

[43]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[44]  Mariano Rivera,et al.  Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007, IEEE Transactions on Medical Imaging.

[45]  Yogesh Rathi,et al.  Fast and Accurate Reconstruction of HARDI Data Using Compressed Sensing , 2010, MICCAI.

[46]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[47]  Chris A Clark,et al.  White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? , 2003, NeuroImage.

[48]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[49]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[50]  Willi Freeden,et al.  Orthogonal and Nonorthogonal Multiresolution Analysis, Scale Discrete and Exact Fully Discrete Wavelet Transform on the Sphere , 1998 .

[51]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[52]  Thomas R. Knösche,et al.  Variational inference of the fiber orientation density using diffusion MR imaging , 2008, NeuroImage.

[53]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[54]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[55]  Oleg V. Michailovich,et al.  An Iterative Shrinkage Approach to Total-Variation Image Restoration , 2009, IEEE Transactions on Image Processing.

[56]  Armando Manduca,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -Minimization , 2009, IEEE Transactions on Medical Imaging.

[57]  Baba C. Vemuri,et al.  von Mises-Fisher mixture model of the diffusion ODF , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[58]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[59]  C. Hardy,et al.  Accelerated diffusion spectrum imaging in the human brain using compressed sensing , 2011, Magnetic resonance in medicine.

[60]  E. R. Kandel,et al.  Synaptic transmission: A bidirectional and self-modifiable form of cell-cell communication , 1993, Cell.

[61]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[62]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[63]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[64]  Carl-Fredrik Westin,et al.  Estimation of fiber Orientation Probability Density Functions in High Angular Resolution Diffusion Imaging , 2009, NeuroImage.

[65]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[66]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[67]  M. Singh,et al.  Compressed Sensing based Diffusion Spectrum Imaging , 2009 .

[68]  Yogesh Rathi,et al.  On Approximation of Orientation Distributions by Means of Spherical Ridgelets , 2008, IEEE Transactions on Image Processing.

[69]  M. Kraut,et al.  Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo , 2002, Annals of neurology.

[70]  Kuni Ohtomo,et al.  Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the tumor. , 2005, Journal of computer assisted tomography.

[71]  Yogesh Rathi,et al.  Filtered Tractography: State estimation in a constrained subspace , 2009 .

[72]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[73]  J. Aujol,et al.  Some algorithms for total variation based image restoration , 2008 .

[74]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[75]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[76]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[77]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[78]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[79]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[80]  Rick Chartrand,et al.  Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[81]  Hans-Peter Seidel,et al.  Estimating Crossing Fibers: A Tensor Decomposition Approach , 2008, IEEE Transactions on Visualization and Computer Graphics.

[82]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[83]  B W Kreher,et al.  Multitensor approach for analysis and tracking of complex fiber configurations , 2005, Magnetic resonance in medicine.

[84]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[85]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[86]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .