Machine learning and applications in ultrafast photonics

[1]  Christophe Zimmer,et al.  Deep learning massively accelerates super-resolution localization microscopy , 2018, Nature Biotechnology.

[2]  Marcus Motzkus,et al.  Quantum control of energy flow in light harvesting , 2002, Nature.

[3]  Roberto Morandotti,et al.  Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability , 2016, Nature Communications.

[4]  Yibo Zhang,et al.  Deep learning-based super-resolution in coherent imaging systems , 2018, Scientific Reports.

[5]  A. Weiner,et al.  Space-time focusing in a highly multimode fiber via optical pulse shaping. , 2018, Optics letters.

[6]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[7]  Thomas Nowotny,et al.  An unsupervised neuromorphic clustering algorithm , 2019, Biological Cybernetics.

[8]  Jaideep Pathak,et al.  Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics , 2019, Neural Networks.

[9]  Alon Bahabad,et al.  Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber , 2018 .

[10]  Cristina Masoller,et al.  Machine learning algorithms for predicting the amplitude of chaotic laser pulses. , 2019, Chaos.

[11]  Daniel B. Turner,et al.  Femtosecond pulse compression using a neural-network algorithm. , 2018, Optics letters.

[12]  Roberto Morandotti,et al.  Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting , 2018, Nature Communications.

[13]  A. Hartschuh,et al.  Efficient optimization of SHG hotspot switching in plasmonic nanoantennas using phase-shaped laser pulses controlled by neural networks. , 2018, Optics express.

[14]  Steven R. Young,et al.  Optimizing deep learning hyper-parameters through an evolutionary algorithm , 2015, MLHPC@SC.

[15]  M. Torres-Cisneros,et al.  Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform. , 2014, Optics express.

[16]  Shuai Li,et al.  Lensless computational imaging through deep learning , 2017, ArXiv.

[17]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[18]  J Shamir,et al.  Genetic algorithm for optical pattern recognition. , 1991, Optics letters.

[19]  Cyril Billet,et al.  Machine learning analysis of extreme events in optical fibre modulation instability , 2018, Nature Communications.

[20]  Foued Amrani,et al.  Toward an autosetting mode-locked fiber laser cavity , 2016 .

[21]  M. Leutbecher,et al.  Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors. , 1993, Applied optics.

[22]  R I Woodward,et al.  Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. , 2017, Optics letters.

[23]  Maziar Raissi,et al.  Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations , 2018, J. Mach. Learn. Res..

[24]  Alessandro Foi,et al.  Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network , 2020, Nature Machine Intelligence.

[25]  F. Hutter,et al.  Fast Bayesian hyperparameter optimization on large datasets , 2017, Electronic Journal of Statistics.

[26]  Lei Tian,et al.  Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media , 2018, Optica.

[27]  Christophe Finot,et al.  Nonlinear sculpturing of optical pulses with normally dispersive fiber-based devices , 2018, Optical Fiber Technology.

[28]  D P Lyons,et al.  Optical tomography using a genetic algorithm. , 1996, Optics letters.

[29]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[30]  Frank W. Wise,et al.  Recent advances in fibre lasers for nonlinear microscopy , 2013, Nature Photonics.

[31]  Tanya M Monro,et al.  A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. , 2009, Optics express.

[32]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[33]  Sergey Kobtsev,et al.  Machine Learning Methods for Control of Fibre Lasers with Double Gain Nonlinear Loop Mirror , 2019, Scientific Reports.

[34]  Uwe Morgner,et al.  Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks. , 2019, Optics letters.

[35]  Weisheng Hu,et al.  Intelligent programmable mode-locked fiber laser with a human-like algorithm , 2019, Optica.

[36]  Daniel Brunner,et al.  Efficient design of hardware-enabled reservoir computing in FPGAs , 2018, Journal of Applied Physics.

[37]  Sasikanth Manipatruni,et al.  Design of optical neural networks with component imprecisions , 2019, Optics express.

[38]  J. Dudley,et al.  Instabilities in a dissipative soliton-similariton laser using a scalar iterative map. , 2020, Optics letters.

[39]  Marco Ruffini,et al.  An Overview on Application of Machine Learning Techniques in Optical Networks , 2018, IEEE Communications Surveys & Tutorials.

[40]  W. Knox,et al.  Ultrafast technology in telecommunications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  Shie Mannor,et al.  Deep Learning Reconstruction of Ultra-Short Pulses , 2018, ArXiv.

[42]  K. Sugioka,et al.  Ultrafast lasers—reliable tools for advanced materials processing , 2014, Light: Science & Applications.

[43]  Sravya Nimmagadda,et al.  Turbulence Enrichment using Physics-informed Generative Adversarial Networks , 2020, ArXiv.

[44]  S. Turitsyn,et al.  Machine learning-based pulse characterization in figure-eight mode-locked lasers. , 2019, Optics letters.

[45]  D. Zibar,et al.  Machine Learning Techniques in Optical Communication , 2016 .

[46]  D N Fittinghoff,et al.  Direct ultrashort-pulse intensity and phase retrieval by frequency-resolved optical gating and a computational neural network. , 1996, Optics letters.

[47]  G. Mourou,et al.  Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy. , 2000, Optics letters.

[48]  Audrey Durand,et al.  A machine learning approach for online automated optimization of super-resolution optical microscopy , 2018, Nature Communications.

[49]  Yibo Zhang,et al.  Phase recovery and holographic image reconstruction using deep learning in neural networks , 2017, Light: Science & Applications.

[50]  Henry C. Kapteyn,et al.  Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser , 2017 .

[51]  J Nathan Kutz,et al.  High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. , 2013, Optics express.

[52]  Ata Mahjoubfar,et al.  Deep Learning in Label-free Cell Classification , 2016, Scientific Reports.

[53]  Michael Unser,et al.  Learning approach to optical tomography , 2015, 1502.01914.

[54]  Navid Borhani,et al.  Learning to see through multimode fibers , 2018, Optica.

[55]  J W Nicholson,et al.  Evolving FROGS: phase retrieval from frequency-resolved optical gating measurements by use of genetic algorithms. , 1999, Optics letters.

[56]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[57]  Achim Hartschuh,et al.  O ct 2 01 8 Efficient Hotspot Switching in Plasmonic Nanoantennas using Phase-shaped Laser Pulses controlled by Neural Networks , 2018 .

[58]  T. Sylvestre,et al.  Real-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics , 2019, Scientific Reports.

[59]  W Sibbett,et al.  The development and application of femtosecond laser systems. , 2012, Optics express.

[60]  M. C. Soriano,et al.  Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing. , 2019, Chaos.

[61]  Arnaud Mussot,et al.  Rogue waves and analogies in optics and oceanography , 2019, Nature Reviews Physics.

[62]  George Barbastathis,et al.  Low Photon Count Phase Retrieval Using Deep Learning. , 2018, Physical review letters.

[63]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[64]  J. Dudley,et al.  Toward a self-driving ultrafast fiber laser , 2020, Light, science & applications.

[65]  Stanislav Straupe,et al.  Experimental neural network enhanced quantum tomography , 2019, npj Quantum Information.

[66]  Almantas Galvanauskas,et al.  Ultrafast lasers : technology and applications , 2002 .

[67]  Foued Amrani,et al.  Fiber laser mode locked through an evolutionary algorithm , 2015, CLEO 2015.

[68]  Steven L. Brunton,et al.  Deep Learning and Model Predictive Control for Self-Tuning Mode-Locked Lasers , 2017, ArXiv.

[69]  J. Nathan Kutz,et al.  Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. , 2014, Optics express.

[70]  Weisheng Hu,et al.  Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis , 2020, Light: Science & Applications.

[71]  Dominique Pagnoux,et al.  Shaping the light amplified in a multimode fiber , 2016, Light: Science & Applications.

[72]  A. Ozcan,et al.  Deep learning in holography and coherent imaging , 2019, Light: Science & Applications.

[73]  Henk Wymeersch,et al.  Machine learning under the spotlight , 2017, Nature Photonics.

[74]  V. Kermene,et al.  Space-time adaptive control of femtosecond pulses amplified in a multimode fiber. , 2017, Optics express.

[75]  Jaideep Pathak,et al.  Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. , 2018, Physical review letters.

[76]  Damien Rontani,et al.  Bayesian optimisation of large-scale photonic reservoir computers , 2020, ArXiv.

[77]  Jordan M. Malof,et al.  Deep learning for accelerated all-dielectric metasurface design. , 2019, Optics express.

[78]  Scott A. Diddams,et al.  The evolving optical frequency comb , 2010 .

[79]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[80]  Alvaro Sanchez-Gonzalez,et al.  Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning , 2017, Nature Communications.

[81]  David J. Richardson,et al.  High power fiber lasers: current status and future perspectives [Invited] , 2010 .

[82]  Shanhui Fan,et al.  Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices , 2018, ACS Photonics.

[83]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[84]  Zheng Yan,et al.  Emerging role of machine learning in light-matter interaction , 2019, Light: Science & Applications.

[85]  R. I. Woodward,et al.  Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm , 2016, Scientific Reports.

[86]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[87]  Michael Mrejen,et al.  Plasmonic nanostructure design and characterization via Deep Learning , 2018, Light: Science & Applications.

[88]  Jean-Marc Merolla,et al.  Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser , 2018, Nature Photonics.

[89]  J. Dudley,et al.  Machine learning analysis of rogue solitons in supercontinuum generation , 2020, Scientific Reports.

[90]  Ravi S. Hegde,et al.  Deep learning: a new tool for photonic nanostructure design , 2020, Nanoscale advances.

[91]  Junjie Jiang,et al.  Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network spectral radius , 2019, Physical Review Research.

[92]  D. Psaltis,et al.  Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks , 2019 .

[93]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[94]  S.F. Shu,et al.  Evolving ultrafast laser information by a learning genetic algorithm combined with a knowledge base , 2006, IEEE Photonics Technology Letters.

[95]  S Martin,et al.  Synthesis of optical multilayer systems using genetic algorithms. , 1995, Applied optics.

[96]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[97]  Z. Chang,et al.  Attosecond streaking phase retrieval with neural network. , 2019, Optics express.

[98]  Steven L. Brunton,et al.  Intelligent Systems for Stabilizing Mode-Locked Lasers and Frequency Combs: Machine Learning and Equation-Free Control Paradigms for Self-Tuning Optics , 2015 .

[99]  Weisheng Hu,et al.  Genetic Algorithm-Based Fast Real-Time Automatic Mode-Locked Fiber Laser , 2020, IEEE Photonics Technology Letters.

[100]  H. Tagare,et al.  Deep learning of ultrafast pulses with a multimode fiber , 2019, 1911.00649.

[101]  Yibo Zhang,et al.  Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery , 2018, Optica.

[102]  Pierre Suret,et al.  Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography , 2018 .

[103]  A. Lugnan,et al.  Photonic neuromorphic information processing and reservoir computing , 2020 .

[104]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[105]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.