Phantomlike behavior in a brane-world model with curvature effects

Recent observational evidence seems to allow the possibility that our Universe may currently be under a dark energy effect of a phantom nature. A suitable effective phantom fluid behavior can emerge in brane cosmology; in particular, within the normal non-self-accelerating Dvali-Gabadadze-Porrati branch, without any exotic matter and due to curvature effects from induced gravity. The phantomlike behavior is based in defining an effective energy density that grows as the brane expands. This effective description breaks down at some point in the past when the effective energy density becomes negative and the effective equation of state parameter blows up. In this paper we investigate if the phantomlike regime can be enlarged by the inclusion of a Gauss-Bonnet (GB) term into the bulk. The motivation is that such a GB component would model additional curvature effects on the brane setting. More precisely, our aim is to determine if the GB term, dominating and modifying the early behavior of the brane universe, may eventually extend the regime of validity of the phantom mimicry on the brane. However, we show that the opposite occurs: the GB effect seems instead to induce a breakdown of the phantomlike behavior at an even smaller redshift.