New Prize " Ems Monograph Award " by the Ems Publishing House European Mathematical Society Editor-in-chief Copy Editor

On the occasion of our tenth anniversary, we are happy to announce a new prize, open to all mathematicians. The EMS Monograph Award is assigned every two years to the author(s) of a monograph in any area of mathematics that is judged by the selection committee to be an outstanding contribution to its field. The prize is endowed with 10,000 Euro and the winning monograph will be published by the EMS Publishing House in the series " EMS Tracts in Mathematics ". Submission The monograph must be original and unpublished, written in English and should not be submitted elsewhere until an editorial decision is rendered on the submission. The first award will be announced in 2014 (probably in the June News letter of the EMS); the deadline for submissions is 30 June 2013. Monographs should preferably be type-set in TeX. Authors should send a pdf file of the manuscript by email and a hard copy together with a letter to: This series includes advanced texts and monographs covering all fields in pure and applied mathematics. Tracts will give a reliable introduction and reference to special fields of current research. The books in the series will in most cases be authored monographs, although edited volumes may be published if appropriate. They are addressed to graduate students seeking access to research topics as well as to the experts in the field working at the frontier of research. The views expressed in this Newsletter are those of the authors and do not necessarily represent those of the EMS or the Editorial Team.

[1]  María Pe Pereira,et al.  Nash problem for quotient surface singularities , 2010, J. Lond. Math. Soc..

[2]  Mogens Allan Niss Models and Modelling in Mathematics Education , 2012 .

[3]  K. Alladi Ramanujan's Place in the World of Mathematics: Essays Providing a Comparative Study , 2012 .

[4]  T. Fernex Three-dimensional counter-examples to the Nash problem , 2012, 1205.0603.

[5]  W. Heinzer,et al.  Existence of dicritical divisors , 2012 .

[6]  K. Alladi Srinivasa Ramanujan : Going Strong at 125 , Part , 2012 .

[7]  S. Abhyankar,et al.  Algebraic theory of dicritical divisors , 2011 .

[8]  Ana J. Reguera Arcs and wedges on rational surface singularities , 2011 .

[9]  J. F. Bobadilla,et al.  Nash problem for surfaces , 2011, 1102.2212.

[10]  J. F. Bobadilla Nash problem for surface singularities is a topological problem , 2010, 1011.6335.

[11]  Bijectiveness of the Nash Map for Quasi-Ordinary Hypersurface Singularities , 2007, 0705.0520.

[12]  Vincent Cossart,et al.  RESOLUTION OF SINGULARITIES OF THREEFOLDS IN POSITIVE CHARACTERISTIC II , 2008 .

[13]  S. D. Cutkosky,et al.  Resolution of singularities for 3-folds in positive characteristic , 2006, math/0606530.

[14]  P. Popescu-Pampu,et al.  Families of higher dimensional germs with bijective Nash map , 2006, math/0605566.

[15]  P. Petrov Nash problem for stable toric varieties , 2006, math/0604432.

[16]  Ana J. Reguera A curve selection lemma in spaces of arcs and the image of the Nash map , 2006, Compositio Mathematica.

[17]  P. Pérez,et al.  Arcs and jets on toric singularities and quasi-ordinary singularities , 2006 .

[18]  George E. Andrews,et al.  Ramanujan's Lost Notebook: Part I , 2005 .

[19]  Camille Plénat A propos du problème des arcs de Nash , 2005 .

[20]  P. Popescu-Pampu,et al.  A class of non-rational surface singularities with bijective Nash map , 2004, math/0410145.

[21]  J. Fernández-Sánchez Equivalence of the Nash conjecture for primitive and sandwiched singularities , 2004 .

[22]  Ana J. Reguera Image of the Nash map in terms of wedges , 2004 .

[23]  N. Gorgorió,et al.  Are different students expected to learn norms differently in the mathematics classroom? , 2004 .

[24]  S. Abhyankar Polynomials and Power Series , 2004 .

[25]  L. Schauble,et al.  Design Experiments in Educational Research , 2003 .

[26]  Steffen L. Lauritzen,et al.  Thiele - Pioneer in Statistics , 2002 .

[27]  E. Yackel,et al.  Explanation, Justification and Argumentation in Mathematics Classrooms. , 2001 .

[28]  S. Abhyankar Resolution of singularities and modular Galois theory , 2000 .

[29]  K. Ramskov The Danish Mathematical Society through 125 Years , 2000 .

[30]  Chris Rasmussen,et al.  Social and sociomathematical norms in an advanced undergraduate mathematics course , 2000 .

[31]  Koeno Gravemeijer,et al.  Supporting Students' Ways of Reasoning about Data. , 2000 .

[32]  P. Cobb,et al.  Sociomathematical Norms, Argumentation, and Autonomy in Mathematics. , 1996 .

[33]  M. Lejeune-jalabert,et al.  Sur L’espace Des Courses Tracées Sur Une Singularité , 1996 .

[34]  Ana J. Reguera Families of arcs on rational surface singularities , 1995 .

[35]  J. Nash Arc structure of singularities , 1995 .

[36]  Michel Raynaud,et al.  Revêtements de la droite affine en caractéristiquep>0 et conjecture d'Abhyankar , 1994 .

[37]  David Harbater,et al.  Abhyankar's conjecture on Galois groups over curves , 1994 .

[38]  Robert A. Rankin,et al.  The Man Who Knew Infinity , 1992, The Mathematical Gazette.

[39]  Paul Cobb,et al.  Small-group interactions as a source of learning opportunities in second-grade mathematics. , 1991 .

[40]  F. Dyson RAMANUJAN'S NOTEBOOKS Parts I and II , 1990 .

[41]  R. Narasimhan Hyperplanarity of the equimultiple locus , 1983 .

[42]  Lee Rudolph,et al.  Embeddings of the line in the plane. , 1982 .

[43]  G. Hardy,et al.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work , 1978 .

[44]  T. Moh,et al.  Newton-Puiseux expansion and generalized Tschirnhausen transformation. I. , 1973 .

[45]  S. Abhyankar Resolution Of Singularities Of Embedded Algebraic Surfaces , 1966 .

[46]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[47]  Obituary , 1959 .

[48]  Shreeram S. Abhyankar,et al.  COVERINGS OF ALGEBRAIC CURVES. , 1957 .

[49]  S. Abhyankar Local uniformization on algebraic surfaces over ground fields of characteristic p ≠ 0 1 , 1956 .

[50]  Shreeram S. Abhyankar,et al.  On the Ramification of algebraic functions , 1955 .

[51]  Oscar Zariski,et al.  Reduction of the Singularities of Algebraic Three Dimensional Varieties , 1944 .

[52]  H. T. H. P. Einleitung in die Mengenlehre , 1929, Nature.

[53]  C. Kuratowski Sur la méthode d'inversion dans l'Analysis Situs , 2022 .

[54]  Entwicklung der Mengenlehre und ihrer Anwendungen , 1915 .

[55]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[56]  A. Schoenflies,et al.  Die Entwickelung der Lehre von den Punktmannigfaltigkeiten : Bericht erstattet der Deutschen Mathematiker-Vereinigung , 1908 .

[57]  G. M. The Theory of Sets of Points , 1906, Nature.