Mixtures of Polya trees for flexible spatial frailty survival modelling

Abstract Mixtures of Polya trees offer a very flexible nonparametric approach for modelling time-to-event data. Many such settings also feature spatial association that requires further sophistication, either at the point level or at the lattice level. In this paper, we combine these two aspects within three competing survival models, obtaining a data analytic approach that remains computationally feasible in a fully hierarchical Bayesian framework using Markov chain Monte Carlo methods. We illustrate our proposed methods with an analysis of spatially oriented breast cancer survival data from the Surveillance, Epidemiology and End Results program of the National Cancer Institute. Our results indicate appreciable advantages for our approach over competing methods that impose unrealistic parametric assumptions, ignore spatial association or both.

[1]  E J Bedrick,et al.  Bayesian accelerated failure time analysis with application to veterinary epidemiology. , 2000, Statistics in medicine.

[2]  J. Vaupel,et al.  The impact of heterogeneity in individual frailty on the dynamics of mortality , 1979, Demography.

[3]  A. Gelfand,et al.  Bayesian analysis of proportional hazards models built from monotone functions. , 1995, Biometrics.

[4]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[5]  Bradley P Carlin,et al.  Multivariate Parametric Spatiotemporal Models for County Level Breast Cancer Survival Data , 2005, Lifetime data analysis.

[6]  A parametric model for long‐term follow‐up data from phase III breast cancer clinical trials , 2003, Statistics in medicine.

[7]  Anastasios A. Tsiatis,et al.  Semiparametric Efficient Estimation in the Generalized Odds-Rate Class of Regression Models for Right-Censored Time-to-Event Data , 1998, Lifetime data analysis.

[8]  B. Carlin,et al.  Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. , 2003, Biostatistics.

[9]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[10]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[11]  Yi Li,et al.  Semiparametric Normal Transformation Models for Spatially Correlated Survival Data , 2006 .

[12]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[13]  B. Carlin,et al.  Spatial Semiparametric Proportional Hazards Models for Analyzing Infant Mortality Rates in Minnesota Counties , 2002 .

[14]  Ronald Christensen,et al.  Modelling accelerated failure time with a Dirichlet process , 1988 .

[15]  Lynn Kuo,et al.  Bayesian semiparametric inference for the accelerated failure‐time model , 1997 .

[16]  Lee-Jen Wei,et al.  The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. , 1992, Statistics in medicine.

[17]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .

[18]  Bani K. Mallick,et al.  Hierarchical Generalized Linear Models and Frailty Models with Bayesian Nonparametric Mixing , 1997 .

[19]  Min Zhang,et al.  “Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time‐to‐Event Data , 2008, Biometrics.

[20]  D. Dey,et al.  Semiparametric Bayesian analysis of survival data , 1997 .

[21]  Timothy Hanson,et al.  Bayesian Semiparametric Proportional Odds Models , 2007, Biometrics.

[22]  J. Berger,et al.  Bayesian and Conditional Frequentist Testing of a Parametric Model Versus Nonparametric Alternatives , 2001 .

[23]  W. Johnson,et al.  Modeling Regression Error With a Mixture of Polya Trees , 2002 .

[24]  Stephen G. Walker,et al.  A Bayesian semiparametric transformation model incorporating frailties , 2003 .

[25]  Arthur P. Dempster,et al.  The direct use of likelihood for significance testing , 1997, Stat. Comput..

[26]  T. Hanson Inference for Mixtures of Finite Polya Tree Models , 2006 .

[27]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[28]  B. Mallick,et al.  A Bayesian Semiparametric Accelerated Failure Time Model , 1999, Biometrics.

[29]  Ronald Christensen,et al.  Nonparametric Bayesian analysis of the accelerated failure time model , 1989 .

[30]  Robin Henderson,et al.  Modelling Converging Hazards in Survival Analysis , 2004, Lifetime data analysis.

[31]  J. Kalbfleisch Non‐Parametric Bayesian Analysis of Survival Time Data , 1978 .

[32]  A. Linde DIC in variable selection , 2005 .

[33]  S. Pocock,et al.  Regression Models and Non‐Proportional Hazards in the Analysis of Breast Cancer Survival , 1984 .

[34]  L. Fahrmeir,et al.  Geoadditive Survival Models , 2006 .

[35]  M. May Bayesian Survival Analysis. , 2002 .

[36]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[37]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[38]  Nicholas P. Jewell,et al.  On a general class of semiparametric hazards regression models , 2001 .

[39]  Angelika van der Linde,et al.  On the association between a random parameter and an observable , 2004 .

[40]  Louise Ryan,et al.  Modeling Spatial Survival Data Using Semiparametric Frailty Models , 2002, Biometrics.

[41]  Torben Martinussen,et al.  Dynamic Regression Models for Survival Data , 2006 .

[42]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[43]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[44]  Aparna V. Huzurbazar,et al.  A Censored Data Histogram , 2005 .

[45]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[46]  Yongdai Kim,et al.  Bayesian analysis of proportional hazard models , 2003 .

[47]  A. Tsodikov,et al.  The shape of the hazard function in breast carcinoma , 1999, Cancer.

[48]  B. Carlin,et al.  Semiparametric spatio‐temporal frailty modeling , 2003 .

[49]  Paul Gustafson,et al.  On Robustness and Model Flexibility in Survival Analysis: Transformed Hazard Models and Average Effects , 2007, Biometrics.

[50]  Joseph G Ibrahim,et al.  A class of Bayesian shared gamma frailty models with multivariate failure time data. , 2005, Biometrics.

[51]  Bradley P. Carlin,et al.  Bayesian Methods for Data Analysis , 2008 .

[52]  M. Lavine More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .

[53]  J L Hutton,et al.  Choice of Parametric Accelerated Life and Proportional Hazards Models for Survival Data: Asymptotic Results , 2002, Lifetime data analysis.

[54]  Bradley P Carlin,et al.  Generalized Hierarchical Multivariate CAR Models for Areal Data , 2005, Biometrics.

[55]  Dipak K. Dey,et al.  Semiparametric Proportional Odds Models for Spatially Correlated Survival Data , 2005, Lifetime data analysis.