COLD MOLECULAR GAS IN MASSIVE, STAR-FORMING DISK GALAXIES AT z = 1.5
暂无分享,去创建一个
F. Walter | J. Wagg | D. Riechers | H. Dannerbauer | E. Daddi | M. Aravena | G. Morrison | M. Krips | C. Carilli | D. Stern | D. Stern
[1] M. Dickinson,et al. VERY LARGE ARRAY 1.4 GHz OBSERVATIONS OF THE GOODS-NORTH FIELD: DATA REDUCTION AND ANALYSIS , 2010, 1004.1671.
[2] D. Elbaz,et al. DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.
[3] R. Davé,et al. IMAGING THE MOLECULAR GAS IN A SUBMILLIMETER GALAXY AT z = 4.05: COLD MODE ACCRETION OR A MAJOR MERGER? , 2010, 1002.3838.
[4] M. C. Cooper,et al. High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.
[5] D. Elbaz,et al. VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.
[6] F. Walter,et al. IMAGING ATOMIC AND HIGHLY EXCITED MOLECULAR GAS IN a z = 6.42 QUASAR HOST GALAXY: COPIOUS FUEL FOR AN EDDINGTON-LIMITED STARBURST AT THE END OF COSMIC REIONIZATION , 2009, 0908.0018.
[7] M. Gerin,et al. Are 12CO lines good indicators of the star formation rate in galaxies , 2009, 0906.2975.
[8] D. Elbaz,et al. LOW MILKY-WAY-LIKE MOLECULAR GAS EXCITATION OF MASSIVE DISK GALAXIES AT z ∼ 1.5 , 2009, 0905.3637.
[9] F. Walter,et al. A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.
[10] R. Teyssier,et al. Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.
[11] B. Madore,et al. THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.
[12] K. Jahnke,et al. Properties of the molecular gas in a starbursting QSO at z = 1.83 in the COSMOS field , 2008, 0809.2337.
[13] S. Rabien,et al. From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.
[14] F. Walter,et al. A Molecular Einstein Ring at z = 4.12: Imaging the Dynamics of a Quasar Host Galaxy Through a Cosmic Lens , 2008, 0806.4616.
[15] University College London,et al. Testing the evolutionary link between submillimetre galaxies and quasars: CO observations of QSOs at z∼ 2 , 2008, 0806.0618.
[16] A. Cimatti,et al. Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.
[17] J. Stutzki,et al. 12CO 4-3 and [CI] 1-0 at the centers of NGC 4945 and Circinus , 2007, 0712.1924.
[18] S. Ravindranath,et al. Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.
[19] M. A. Strauss,et al. to appear in the Astrophysical Journal Letters Detection of 1.6 × 10 10 M ⊙ of molecular gas in the host galaxy of the z = 5.77 SDSS quasar J0927+2001. , 2022 .
[20] J. Starck,et al. The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.
[21] F. Walter,et al. Highly-excited CO emission in APM 08279+5255 at z = 3.9 , 2007, astro-ph/0702669.
[22] M. Gerin,et al. A survey of submillimeter C and CO lines in nearby galaxies , 2006, astro-ph/0611340.
[23] A. Weiss,et al. CO(4–3) and CO(7–6) maps of the nucleus of NGC 253 , 2006 .
[24] F. Walter,et al. CO(J = 1→0) IN z > 2 QUASAR HOST GALAXIES: NO EVIDENCE FOR EXTENDED MOLECULAR GAS RESERVOIRS , 2006, 1106.2553.
[25] F. Bertoldi,et al. High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .
[26] P. Solomon,et al. Molecular Gas at High Redshift , 2005, astro-ph/0508481.
[27] C. Henkel,et al. Multiple CO lines in SMM J16359+6612 -- Further evidence for a merger , 2005, astro-ph/0508037.
[28] Edinburgh,et al. An interferometric CO survey of luminous submillimetre galaxies , 2005, astro-ph/0503055.
[29] H. Rix,et al. Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.
[30] L. Dunne,et al. CO Molecular Gas in Infrared-luminous Galaxies , 2003, astro-ph/0301511.
[31] E. Seaquist,et al. A Multitransition CO Study of the Antennae Galaxies NGC 4038/9 , 2003, astro-ph/0301126.
[32] G. Gavazzi,et al. The CO to H-2 conversion factor in normal late-type galaxies , 2002 .
[33] D. Flower. The rotational excitation of CO by H2 , 2001 .
[34] Charles L. Bennett,et al. COBE Far Infrared Absolute Spectrophotometer Observations of Galactic Lines , 1999 .
[35] Cambridge,et al. ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .
[36] Simon J. E. Radford,et al. The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.
[37] A. Fruchter,et al. HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.
[38] O. Fèvre,et al. The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.