COLD MOLECULAR GAS IN MASSIVE, STAR-FORMING DISK GALAXIES AT z = 1.5

We report the detection of the CO J = 1–0 emission line in three near-infrared selected star-forming galaxies at z ∼ 1.5 with the Very Large Array and the Green Bank Telescope. These observations directly trace the bulk of molecular gas in these galaxies. We find H2 gas masses of 8.3 ± 1.9 × 1010 M☉, 5.6 ± 1.4 × 1010 M☉, and 1.23 ± 0.34 × 1011 M☉ for BzK-4171, BzK-21000, and BzK-16000, respectively, assuming a conversion αCO = 3.6 M☉ (K km s−1 pc2)−1. We combined our observations with previous CO 2–1 detections of these galaxies to study the properties of their molecular gas. We find brightness temperature ratios between the CO 2–1 and CO 1–0 emission lines of 0.80+0.35−0.22, 1.22+0.61−0.36, and 0.41+0.23−0.13 for BzK-4171, BzK-21000, and BzK-16000, respectively. At the depth of our observations it is not possible to discern between thermodynamic equilibrium or sub-thermal excitation of the molecular gas at J = 2. However, the low temperature ratio found for BzK-16000 suggests sub-thermal excitation of CO already at J = 2. For BzK-21000, a large velocity gradient model of its CO emission confirms previous results of the low excitation of the molecular gas at J = 3. From a stacked map of the CO 1–0 images, we measure a CO 2–1 to CO 1–0 brightness temperature ratio of 0.92+0.28−0.19. This suggests that, on average, the gas in these galaxies is thermalized up to J = 2, has star formation efficiencies of ∼100 L☉ (K km s−1 pc2)−1, and gas consumption timescales of ∼0.4 Gyr, unlike submillimeter galaxies and quasi-stellar objects at high redshifts.

[1]  M. Dickinson,et al.  VERY LARGE ARRAY 1.4 GHz OBSERVATIONS OF THE GOODS-NORTH FIELD: DATA REDUCTION AND ANALYSIS , 2010, 1004.1671.

[2]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[3]  R. Davé,et al.  IMAGING THE MOLECULAR GAS IN A SUBMILLIMETER GALAXY AT z = 4.05: COLD MODE ACCRETION OR A MAJOR MERGER? , 2010, 1002.3838.

[4]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[5]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[6]  F. Walter,et al.  IMAGING ATOMIC AND HIGHLY EXCITED MOLECULAR GAS IN a z = 6.42 QUASAR HOST GALAXY: COPIOUS FUEL FOR AN EDDINGTON-LIMITED STARBURST AT THE END OF COSMIC REIONIZATION , 2009, 0908.0018.

[7]  M. Gerin,et al.  Are 12CO lines good indicators of the star formation rate in galaxies , 2009, 0906.2975.

[8]  D. Elbaz,et al.  LOW MILKY-WAY-LIKE MOLECULAR GAS EXCITATION OF MASSIVE DISK GALAXIES AT z ∼ 1.5 , 2009, 0905.3637.

[9]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[10]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[11]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[12]  K. Jahnke,et al.  Properties of the molecular gas in a starbursting QSO at z = 1.83 in the COSMOS field , 2008, 0809.2337.

[13]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[14]  F. Walter,et al.  A Molecular Einstein Ring at z = 4.12: Imaging the Dynamics of a Quasar Host Galaxy Through a Cosmic Lens , 2008, 0806.4616.

[15]  University College London,et al.  Testing the evolutionary link between submillimetre galaxies and quasars: CO observations of QSOs at z∼ 2 , 2008, 0806.0618.

[16]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[17]  J. Stutzki,et al.  12CO 4-3 and [CI] 1-0 at the centers of NGC 4945 and Circinus , 2007, 0712.1924.

[18]  S. Ravindranath,et al.  Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at z = 1.5 , 2007, 0711.4995.

[19]  M. A. Strauss,et al.  to appear in the Astrophysical Journal Letters Detection of 1.6 × 10 10 M ⊙ of molecular gas in the host galaxy of the z = 5.77 SDSS quasar J0927+2001. , 2022 .

[20]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[21]  F. Walter,et al.  Highly-excited CO emission in APM 08279+5255 at z = 3.9 , 2007, astro-ph/0702669.

[22]  M. Gerin,et al.  A survey of submillimeter C and CO lines in nearby galaxies , 2006, astro-ph/0611340.

[23]  A. Weiss,et al.  CO(4–3) and CO(7–6) maps of the nucleus of NGC 253 , 2006 .

[24]  F. Walter,et al.  CO(J = 1→0) IN z > 2 QUASAR HOST GALAXIES: NO EVIDENCE FOR EXTENDED MOLECULAR GAS RESERVOIRS , 2006, 1106.2553.

[25]  F. Bertoldi,et al.  High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .

[26]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[27]  C. Henkel,et al.  Multiple CO lines in SMM J16359+6612 -- Further evidence for a merger , 2005, astro-ph/0508037.

[28]  Edinburgh,et al.  An interferometric CO survey of luminous submillimetre galaxies , 2005, astro-ph/0503055.

[29]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[30]  L. Dunne,et al.  CO Molecular Gas in Infrared-luminous Galaxies , 2003, astro-ph/0301511.

[31]  E. Seaquist,et al.  A Multitransition CO Study of the Antennae Galaxies NGC 4038/9 , 2003, astro-ph/0301126.

[32]  G. Gavazzi,et al.  The CO to H-2 conversion factor in normal late-type galaxies , 2002 .

[33]  D. Flower The rotational excitation of CO by H2 , 2001 .

[34]  Charles L. Bennett,et al.  COBE Far Infrared Absolute Spectrophotometer Observations of Galactic Lines , 1999 .

[35]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[36]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[37]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[38]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.