Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation

: Single-crystal aluminum nitride (AlN) possessing both strong Pockels and Kerr nonlinear optical effects as well as a very large band gap is a fascinating optical platform for integrated nonlinear optics. In this work, fully etched AlN-on-sapphire microresonators with a high-Q of 2.1 × 10 6 for the TE 00 mode are firstly demonstrated with the standard photolithography technique. A near octave-spanning Kerr frequency comb ranging from 1100 to 2150 nm is generated at an on-chip power of 406 mW for the TM 00 mode. Due to the high confinement, the TE 10 mode also excites a Kerr comb from 1270 to 1850nm at 316 mW. In addition, frequency conversion to visible light is observed during the frequency comb generation. Our work will lead to a large-scale, low-cost, integrated nonlinear platform based on AlN.

[1]  Erwan Lucas,et al.  Photonic microwave generation in the X- and K-band using integrated soliton microcombs , 2020, Nature Photonics.

[2]  A. Boes,et al.  Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators , 2019, Nature Communications.

[3]  Z. Mi,et al.  Ultrahigh Q microring resonators using a single-crystal aluminum-nitride-on-sapphire platform. , 2019, Optics letters.

[4]  P. Andrekson,et al.  High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. , 2019, Optics express.

[5]  J. Dai,et al.  Fast growth of high quality AlN films on sapphire using a dislocation filtering layer for ultraviolet light-emitting diodes , 2019, CrystEngComm.

[6]  K. Srinivasan,et al.  Tuning Kerr-Soliton Frequency Combs to Atomic Resonances , 2018, Physical Review Applied.

[7]  M. Karpov,et al.  Ultralow-Power Chip-Based Soliton Microcombs for Photonic Integration , 2018, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[8]  Lai Wang,et al.  Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities , 2018, Applied Physics Letters.

[9]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[10]  H. Tang,et al.  High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. , 2018, Optics letters.

[11]  Zheng Gong,et al.  17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators , 2018, Applied Physics Letters.

[12]  Zheng Gong,et al.  Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform , 2018, Optica.

[13]  Lai Wang,et al.  Integrated High-Q Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs , 2018 .

[14]  Miles H. Anderson,et al.  A microphotonic astrocomb , 2017, Nature Photonics.

[15]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[16]  Erwan Lucas,et al.  Octave-spanning dissipative Kerr soliton frequency combs in Si 3 N 4 microresonators , 2017, 1701.08594.

[17]  Lai Wang,et al.  Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. , 2017, Optics express.

[18]  Qing Li,et al.  Stably accessing octave-spanning microresonator frequency combs in the soliton regime. , 2016, Optica.

[19]  Kyunghun Han,et al.  High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation , 2016 .

[20]  H. Tang,et al.  Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency , 2016 .

[21]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[22]  Hong X. Tang,et al.  Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion , 2016 .

[23]  T. Kippenberg,et al.  All-optical stabilization of a soliton frequency comb in a crystalline microresonator. , 2015, Optics letters.

[24]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[25]  T. Kippenberg,et al.  Counting the Cycles of Light using a Self-Referenced Optical Microresonator , 2014, 1411.1354.

[26]  H. Tang,et al.  Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator , 2014, 1410.5018.

[27]  M. Qi,et al.  Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation , 2014, 1405.6225.

[28]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[29]  C. Xiong,et al.  Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. , 2013, Optics letters.

[30]  M. Lauermann,et al.  Coherent terabit communications with microresonator Kerr frequency combs , 2013, Nature Photonics.

[31]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[32]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[33]  Hansuek Lee,et al.  Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. , 2012, Physical review letters.

[34]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[35]  C. Xiong,et al.  Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. , 2012, Nano letters.

[36]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[37]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[38]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[39]  A. Matsko,et al.  Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator. , 2011, Optics letters.

[40]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[41]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[42]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[43]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[44]  K. Vahala,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[45]  A. Matsko,et al.  Low threshold optical oscillations in a whispering gallery mode CaF(2) resonator. , 2004, Physical review letters.

[46]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[47]  Suhuai Wei,et al.  Band structure and fundamental optical transitions in wurtzite AlN , 2003 .