ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis

Given a reproducing kernel Hilbert space (H,〈.,.〉) of real-valued functions and a suitable measure μ over the source space D⊂R, we decompose H as the sum of a subspace of centered functions for μ and its orthogonal in H. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.

[1]  Ruichen Jin,et al.  Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty , 2005, DAC 2004.

[2]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[3]  J. Weston,et al.  Support vector regression with ANOVA decomposition kernels , 1999 .

[4]  Hao Helen Zhang,et al.  Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.

[5]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[6]  Carl E. Rasmussen,et al.  Additive Gaussian Processes , 2011, NIPS.

[7]  Paul Krée Produits tensoriels complétés d'espaces de Hilbert , 1975 .

[8]  G. Wahba,et al.  Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy : the 1994 Neyman Memorial Lecture , 1995 .

[9]  Steve R. Gunn,et al.  Structural Modelling with Sparse Kernels , 2002, Machine Learning.

[10]  Chong Gu Smoothing Spline Anova Models , 2002 .

[11]  Francis R. Bach,et al.  High-Dimensional Non-Linear Variable Selection through Hierarchical Kernel Learning , 2009, ArXiv.

[12]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[13]  Olivier Roustant,et al.  Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..

[14]  Yuedong Wang Smoothing Spline ANOVA , 2011 .

[15]  A. Antoniadis,et al.  Analysis of variance on function spaces , 1984 .

[16]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[17]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[18]  Gert R. G. Lanckriet,et al.  Reproducing kernel space embeddings and metrics on probability measures , 2010 .

[19]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[20]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[21]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[22]  Shuangzhe Liu,et al.  Global Sensitivity Analysis: The Primer by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola , 2008 .