TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development

[1]  Joanne Chory,et al.  Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants , 2008, Cell.

[2]  P. Hogeweg,et al.  Auxin transport is sufficient to generate a maximum and gradient guiding root growth , 2007, Nature.

[3]  Yunde Zhao,et al.  Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in Arabidopsis[W] , 2007, The Plant Cell Online.

[4]  L. Dolan,et al.  Ethylene Modulates Stem Cell Division in the Arabidopsis thaliana Root , 2007, Science.

[5]  K. Ljung,et al.  Ethylene Regulates Root Growth through Effects on Auxin Biosynthesis and Transport-Dependent Auxin Distribution[W] , 2007, The Plant Cell Online.

[6]  Rishikesh Bhalerao,et al.  Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation[W] , 2007, The Plant Cell Online.

[7]  J. Alonso,et al.  Multilevel Interactions between Ethylene and Auxin in Arabidopsis Roots[W] , 2007, The Plant Cell Online.

[8]  Michael Sauer,et al.  Molecular and cellular aspects of auxin-transport-mediated development. , 2007, Trends in plant science.

[9]  Yunde Zhao,et al.  Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. , 2006, Genes & development.

[10]  G. Sandberg,et al.  STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. , 2006, The Plant journal : for cell and molecular biology.

[11]  G. Jürgens,et al.  Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. , 2006, Developmental cell.

[12]  Michael Sauer,et al.  A Molecular Framework for Plant Regeneration , 2006, Science.

[13]  K. Jiang,et al.  Regulation of root apical meristem development. , 2005, Annual review of cell and developmental biology.

[14]  K. Ljung,et al.  Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsisw⃞ , 2005, The Plant Cell Online.

[15]  Masashi Yamada,et al.  Plant development is regulated by a family of auxin receptor F box proteins. , 2005, Developmental cell.

[16]  Anna N. Stepanova,et al.  A Link between Ethylene and Auxin Uncovered by the Characterization of Two Root-Specific Ethylene-Insensitive Mutants in Arabidopsis , 2005, The Plant Cell Online.

[17]  Tal Nawy,et al.  Transcriptional Profile of the Arabidopsis Root Quiescent Centerw⃞ , 2005, The Plant Cell Online.

[18]  Masashi Yamada,et al.  Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots , 2005, The Plant Cell Online.

[19]  Nancy A. Jenkins,et al.  Simple and highly efficient BAC recombineering using galK selection , 2005, Nucleic acids research.

[20]  J. Alonso,et al.  Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs , 2005 .

[21]  Integrative biology : dissecting cross-talk between plant signalling pathways , 2005 .

[22]  Anna Stepanova,et al.  Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. , 2004, Developmental cell.

[23]  Stephen H. Bryant,et al.  CD-Search: protein domain annotations on the fly , 2004, Nucleic Acids Res..

[24]  Steven Henikoff,et al.  Mismatch cleavage by single-strand specific nucleases. , 2004, Nucleic acids research.

[25]  R. Pedraza,et al.  Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. , 2004, FEMS microbiology letters.

[26]  A. Liepman,et al.  Genomic Analysis of Aminotransferases in Arabidopsis thaliana , 2004 .

[27]  N. Graham,et al.  Auxin cross-talk: integration of signalling pathways to control plant development , 2004, Plant Molecular Biology.

[28]  G. Jürgens,et al.  Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation , 2003, Cell.

[29]  Michael Sauer,et al.  Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis , 2003, Nature.

[30]  J. Slovin,et al.  Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. , 2003, Trends in plant science.

[31]  J. Ecker,et al.  Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. , 2002, Genes & development.

[32]  Gloria K. Muday,et al.  Auxins and Tropisms , 2001, Journal of Plant Growth Regulation.

[33]  J. Chory,et al.  A role for flavin monooxygenase-like enzymes in auxin biosynthesis. , 2001, Science.

[34]  K. Ljung,et al.  The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Nemhauser,et al.  Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. , 2000, Development.

[36]  G. Jürgens,et al.  The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. , 1999, Development.

[37]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[38]  G. Sandberg,et al.  High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Hardtke,et al.  The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development , 1998, The EMBO journal.

[40]  I. Waizenegger,et al.  The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin , 1997, The Journal of cell biology.

[41]  B. Bartel AUXIN BIOSYNTHESIS. , 1997, Annual review of plant physiology and plant molecular biology.

[42]  D. Inzé,et al.  Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. , 1995, The Plant cell.

[43]  A. Theologis,et al.  ASC4, a Primary Indoleacetic Acid-responsive Gene Encoding 1-Aminocyclopropane-1-carboxylate Synthase in Arabidopsis thaliana , 1995, The Journal of Biological Chemistry.

[44]  B. Sundberg,et al.  A Microscale Technique for Gas Chromatography-Mass Spectrometry Measurements of Picogram Amounts of Indole-3-Acetic Acid in Plant Tissues , 1995, Plant physiology.

[45]  A. Theologis,et al.  ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [corrected]. , 1995, The Journal of biological chemistry.

[46]  G. C. Ferreira,et al.  Heme biosynthesis in mammalian systems: Evidence of a schiff base linkage between the pyridoxal 5′‐phosphate cofactor and a lysine residue in 5‐aminolevulinate synthase , 1993, Protein science : a publication of the Protein Society.

[47]  Joseph R. Ecker,et al.  CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases , 1993, Cell.

[48]  J. Bowman,et al.  Genetic interactions among floral homeotic genes of Arabidopsis. , 1991, Development.

[49]  P. Ray,et al.  Ethylene and Carbon Dioxide: Mediation of Hypocotyl Hook-Opening Response , 1967, Science.